Với giải Bài 8.11 trang 55 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 24: Hoán vị, chỉnh hợp và tổ hợp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 24: Hoán vị, chỉnh hợp và tổ hợp
Bài 8.11 trang 55 SBT Toán 10 Tập 2: Trong các số tự nhiên từ 1 đến 999 999, có bao nhiêu số chứa đúng một chữ số 1 và đúng một chữ số 2.
Lời giải:
Các số từ 1 đến 999 999 có thể được viết một cách duy nhất dưới dạng , trong đó mỗi kí hiệu a, b, c, d, e, f nhận một trong các giá trị 0; 1; 2;..., 9. Chẳng hạn số được hiểu là số 1234.
Để tạo thành một số thoả mãn yêu cầu chứa đúng một chữ số 1 và đúng một chữ số 2, ta có thể tiến hành qua hai công đoạn:
– Công đoạn 1: chọn ra 2 kí hiệu trong số a, b, c, d, e, f để thay bằng các chữ số 1; 2;
– Công đoạn 2: thay 4 kí hiệu còn lại, mỗi kí hiệu bằng một chữ số bất kì trong số tám chữ số còn lại 0; 3; 4;...; 9.
Xét công đoạn 1: Chọn ra 2 kí hiệu từ 6 kí hiệu để thay chúng tương ứng bằng 1; 2 (có sắp xếp), số cách chọn là số các chỉnh hợp chập 2 của 6 và là:
(cách)
Xét công đoạn 2: Thay 4 kí hiệu còn lại, mỗi kí hiệu bằng một chữ số bất kì trong số tám chữ số còn lại 0; 3; 4;...; 9. Tức là mỗi kí hiệu còn lại có thể được thay bằng 8 cách khác nhau. Do đó có tổng cộng: 8 . 8 . 8 . 8 = 4 096 (cách).
Vậy, theo quy tắc nhân, số các số từ 1 đến 999 999 cần tìm là:
30 . 4 096 = 122 880 (số).
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 24: Hoán vị, chỉnh hợp và tổ hợp
Bài 26: Biến cố và định nghĩa cổ điển của xác suất