Tìm điều kiện của tham số m để phương trình sau có nghiệm: căn (2x^2 + x + 1) = căn (x^2 +mx + m - 1)

9.3 K

Với giải Bài 6.31 trang 21 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 18: Phương trình quy về phương trình bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải sách bài tập Toán lớp 10 Bài 18: Phương trình quy về phương trình bậc hai

Bài 6.31 trang 21 SBT Toán 10 Tập 2: Tìm điều kiện của tham số m để phương trình sau có nghiệm:2x2+x+1=x2+mx+m1.

Lời giải:

2x2+x+1=x2+mx+m1 (1)

Bình phương hai vế của (1) ta có:

2x2 + x + 1 = x2  + mx + m – 1

 x2 + (1 – m)x + 2 – m = 0     (2)

Xét tam thức bậc hai f(x) = 2x2 + x + 1 có: a = 2 > 0, ∆f = 12 – 4.2.1 = –7 < 0

Do đó,  f(x) = 2x2 + x + 1  > 0 với mọi số thực x nên x2  + mx + m – 1  > 0 với mọi số thực x, do đó,  2x2+x+1x2+mx+m1 luôn có nghĩa với mọi số thực x.

Do đó, (1) có nghiệm khi và chỉ khi (2) có nghiệm.

Xét phương trình bậc hai (2) ta có:

∆ = (1 – m)2 – 4.1.(2 – m) = 1 – 2m + m2 – 8 + 4m = m2 + 2m – 7

Phương trình (2) có nghiệm khi và chỉ chi ∆ ≥ 0

  m2 + 2m – 7 ≥ 0

Xét phương trình bậc hai ẩn m là: m2 + 2m – 7 = 0 có:

a = 1 > 0

m = 22 – 4.1.(–7) = 32 > 0

Do đó, phương trình có hai nghiệm phân biệt là: m1=1+22;m2=122

Do đó, m2 + 2m – 7 ≥ 0  m1+22m122

Vậy khi m1+22 hoặc m122 thì phương trình 2x2+x+1=x2+mx+m1 có nghiệm.

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 6.28 trang 21 SBT Toán 10 Tập 2: Giải các phương trình sau:...

Bài 6.29 trang 21 SBT Toán 10 Tập 2: Giải các phương trình sau:...

Bài 6.30 trang 21 SBT Toán 10 Tập 2: Giải các phương trình sau:...

Bài 6.32 trang 21 SBT Toán 10 Tập 2: Mặt cắt đứng của cột cây số trên quốc lộ có dạng nửa hình tròn ở phía trên và phía dưới có dạng hình chữ nhật (xem hình dưới). Biết rằng đường kính của nửa hình tròn cũng là cạnh phía trên của hình chữ nhật và đường chéo của hình chữ nhật có độ dài 66 cm. Tìm kích thước của hình chữ nhật, biết rằng diện tích của phần nửa hình tròn bằng 0,3 lần diện tích của phần hình chữ nhật. Lấy π = 3,14 và làm tròn kết quả đến chữ số thập phân thứ hai...

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Đánh giá

0

0 đánh giá