Với giải Bài 6.24 trang 18 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 17: Dấu của tam thức bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 17: Dấu của tam thức bậc hai
Bài 6.24 trang 18 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để
a) –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ;
b) x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ.
Lời giải:
a)
Xét phương trình –x2 + (m + 1)x – 2m + 1 = 0 có:
a = –1 < 0
∆ = (m + 1)2 – 4.(–1).(–2m + 1) = m2 + 2m + 1 – 8m + 4 = m2 – 6m + 5
Để –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ ⇔ Δ ≤ 0
⇔ m2 – 6m + 5 ≤ 0
Xét phương trình m2 – 6m + 5 = 0 có a = 1 > 0 và Δm = (–6)2 – 4.1.5 = 16 > 0
Do đó, phương trình m2 – 6m + 5 = 0 có hai nghiệm phân biệt là:
m1 = 1; m2 = 5
Do đó, m2 – 6m + 5 ≤ 0 ⇔ 1 ≤ m ≤ 5
Vậy khi 1 ≤ m ≤ 5 thì –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ.
b)
x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ
Xét phương trình x2 – (2m + 1)x + m + 2 = 0 có:
a = 1 > 0
∆ = [–(2m + 1)]2 – 4.1.(m + 2) = 4m2 + 4m + 1 – 4m – 8 = 4m2 – 7
Để x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ ⇔ Δ < 0
⇔ 4m2 – 7 < 0
⇔
⇔
Vậy khi thì x2 – (2m + 1)x + m + 2 > 0, ∀x ∈ ℝ.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 6.21 trang 18 SBT Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau:...
Bài 6.22 trang 18 SBT Toán 10 Tập 2: Giải các bất phương trình sau:...
Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 17: Dấu của tam thức bậc hai
Bài 18: Phương trình quy về phương trình bậc hai
Bài 19: Phương trình đường thẳng