Giải SBT Toán 10 trang 19 Tập 2 Kết nối tri thức

407

Với lời giải SBT Toán 10 trang 19 Tập 2 chi tiết trong Bài 17: Dấu của tam thức bậc hai sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 17: Dấu của tam thức bậc hai

Bài 6.27 trang 19 SBT Toán 10 Tập 2Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:

b2x2 – (b2 + c2 – a2)x + c2 > 0,  ℝ.

Lời giải:

Vì a, b, c là độ dài ba cạnh của một tam giác nên a, b, c > 0.

Coi f(x) = b2x2 – (b2 + c2 – a2)x + c2  là một tam thức bậc hai ẩn x dạng f(x) = Ax2 + Bx + C.

Xét phương trình bậc hai b2x2 – (b2 + c2 – a2)x + c2  = 0 có:

A = b2 > 0 (vì b là độ dài cạnh của tam giác)

∆ = B2 – 4AC = [– (b2 + c2 – a2)]2 – 4.b2.c2

= (b2 + c2 – a2)2 – (2bc)2  

= (b2 + c2 – a– 2bc)(b2 + c2 – a + 2bc)

= [(b – c)2 – a2][(b + c)2 – a2]

= (b – c – a)(b – c + a)(b + c – a)(b + c + a)

Vì a, b, c là ba cạnh của tam giác nên ta có:

a + b – c > 0

b + c – a > 0

b + c + a > 0

b – c – a = b – (c + a) < 0

Do đó ∆ < 0.

Vậy b2x2 – (b2 + c2 – a2)x + c2 > 0,  ℝ (điều cần phải chứng minh).

Xem thêm các bài giải sách bài tập Toán 10 Kết nối tri thức hay, chi tiết khác:
Giải SBT Toán 10 trang 18 Tập 2

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 16: Hàm số bậc hai

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Bài 19: Phương trình đường thẳng

Đánh giá

0

0 đánh giá