Sách bài tập Toán 12 Bài 17 (Kết nối tri thức): Phương trình mặt cầu

401

Với giải sách bài tập Toán 12 Bài 17: Phương trình mặt cầu sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 12. Mời các bạn đón xem:

Giải SBT Toán 12 Bài 17: Phương trình mặt cầu

Bài 5.21 trang 34 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho hai điểm A(2; 1; 1), B(2; 1; 3).

a) Viết phương trình mặt cầu đường kính AB.

b) Viết phương trình mặt cầu (S) có tâm là gốc tọa độ O(0; 0; 0) và mặt cầu (S) đi qua A.

Lời giải:

a) Gọi I(x; y; z) là trung điểm của AB, ta có:

x=2+22=2y=1+12=1z=1+32=2⇒ I(2; 1; 2).

Mặt cầu đường kính AB có tâm là I(2; 1; 2) và bán kính R = IA.

 IA = 222+112+212 = 1.

Vậy phương trình mặt cầu đường kính AB là:

(x – 2)2 + (y – 1)2 + (z – 2)2 = 12.

⇔ (x – 2)2 + (y – 1)2 + (z – 2)2 = 1.

b) Mặt cầu (S) tâm O và đi qua A có bán kính R = OA.

OA = 202+102+102= 6.

Vậy phương trình mặt cầu (S) là: (x – 0)2 + (y – 0)2 + (z – 0)2 = 62.

⇔ x2 + y2 + z2 = 6.

Bài 5.22 trang 34 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho điểm I(2; −1; 2) và mặt phẳng (P): x + 2y + 2z – 10 = 0. Viết phương trình mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng (P).

Lời giải:

Do mặt cầu (S) tiếp xúc với mặt phẳng (P) nên R = d(I, (P)).

Ta có: R = d(I, (P)) = 2+2.(1)+2.21012+22+22 = 2.

Vậy phương trình mặt cầu (S) là: (x – 2)2 + (y + 1)2 + (z – 2)2 = 22.

⇔ (x – 2)2 + (y + 1)2 + (z – 2)2 = 4.

Bài 5.23 trang 34 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho mặt cầu (S): (x – 1)2 + y2 + (z + 2)2 = 9 và điểm A(2; 2; −1).

a) Xác định tâm I và bán kính R của mặt cầu (S).

b) Chứng minh rằng điểm A nằm trong mặt cầu (S).

Lời giải:

a) Ta có (S): (x – 1)2 + y2 + (z + 2)2 = 9

                ⇔ (x – 1)2 + (y – 0)2 + (z – (−2))2 = 32.

Vậy mặt cầu (S) có tâm I(1; 0; −2) và bán kính R = 3.

b) Ta có: IA = 212+202+1+22 = 6 < 3.

Do đó, điểm A nằm trong mặt cầu (S).

Bài 5.24 trang 34 SBT Toán 12 Tập 2: Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.

a) x2 + y2 + z2 + 2x – 4z + 2 = 0.

b) x2 + y2 + z2 – 2x + 2y + 2z + 7 = 0.

c) 3x2 + 3y2 + 3z2 + 12x – 6y + 6z + 2 = 0.

Lời giải:

a) Phương trình có các hệ số a = −1, b = 0, c = 2 và d = 2.

⇒ a2 + b2 + c2 – d = (−1)2 + 02 + 22 – 2 = 3 > 0.

Do đó, phương trình đã cho là phương trình mặt cầu, hơn nữa mặt cầu có tâm là I(−1; 0; 2) và bán kính R = 3.

b) Phương trình có các hệ số a = 1, b = −1, c = −1 và d = 7.

⇒ a2 + b2 + c2 – d = 12 + (−1)2 + (−1)2 – 7 = −4 < 0.

Do đó, phương trình đã cho không phải là phương trình mặt cầu.

c) Ta có: 3x2 + 3y2 + 3z2 + 12x – 6y + 6z + 2 = 0.

⇔ x2 + y2 + z2 + 4x – 2y + 2z + 23 = 0.

Phương trình có các hệ số: a = −2, b =1, c = −1 và d = 23.

⇒ a2 + b2 + c2 – d = (−2)2 + 12 + (−1)2  23 = 163 > 0.

Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(−2; 1; −1) và R = 433.

Bài 5.25 trang 34 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho hai điểm A(1; 2; 1) và B(−1; −2; 3). Viết phương trình mặt cầu (S) có tâm I thuộc trục Ox và (S) đi qua hai điểm A và B.

Lời giải:

Theo đề bài, tâm I thuộc trục Ox nên I(x; 0; 0).

(S) đi qua hai điểm A và B nên IA = IB.

⇒ (x – 1)2 + (0 – 2)2 + (0 – 1)2 = (x + 1)2 + (0 + 2)2 + (0 – 3)2

⇒ x2 – 2x + 6 = x2 + 2x + 14

⇔ x = −2.

Do đó, tâm I(−2; 0; 0) và bán kính IA = 14.

Phương trình mặt cầu cần tìm là: (x + 2)2 + y2 + z2 = 14.

Bài 5.26 trang 34 SBT Toán 12 Tập 2: Trong không gian Oxyz, giả sử bề mặt Trái Đất (S) có phương trình x2 + y2 + z2 = 1. Từ vị trí A12;12;12, người ta dự định đào một hầm xuyên qua lòng đất theo hướng v = (2; 2; −3). Tính độ dài đường hầm cần đào.

Lời giải:

Đường hầm thuộc đường thẳng d đi qua A12;12;12 và nhận v = (2; 2; −3) làm vectơ chỉ phương.

Phương trình đường thẳng d là: x=12+2ty=12+2tz=123t.

Gọi B là điểm cuối cùng của đường hầm cần đào.

Khi đó, B là giao điểm của đường thẳng ∆ và mặt cầu (S). Tọa độ B có dạng

B12+2t;12+2t;123t (với t ≠ 0 để B khác A) và thỏa mãn phương trình mặt cầu (S), tức là:

12+2t2+12+2t2+123t2=1

⇔ 17t2 + (2 −32)t = 0 ⇒ t = 32217.

Suy ra AB = 2t2+2t2+3t2=t17=32217

Bài 5.27 trang 35 SBT Toán 12 Tập 2: Một quả bóng hình cầu có bán kính 2 m được treo lơ lửng trên một mặt phẳng. Tâm quả bóng đặt cách mặt đất 10 m. Chọn hệ trục tọa độ Oxyz có gốc tọa độ O là hình chiếu vuông góc của tâm quả cầu trên mặt đất, tia Oz chứa tâm của quả cầu, các trục Ox, Oy thuộc mặt đất như hình vẽ. Viết phương trình của mặt cầu bề mặt quả bóng.

Một quả bóng hình cầu có bán kính 2 m được treo lơ lửng trên một mặt phẳng

Lời giải:

Tâm của mặt cầu là I(0; 0; 10).

Phương trình của mặt cầu bề mặt quả bóng là: (S): x2 + y2 + (z – 10)2 = 4.

Lý thuyết Phương trình mặt cầu

1. Phương trình mặt cầu

Trong không gian Oxyz, mặt cầu (S) tâm I(a; b; c) bán kính R có phương trình:

(x – a)2 + (y – b)2 + (z – c)2 = R2.

Phương trình mặt cầu (Lý thuyết Toán lớp 12) | Kết nối tri thức

Chú ý

+) Điểm M(x; y; z) nằm trong mặt cầu (S) nếu (x – a)2 + (y – b)2 + (z – c)2 < R2.

+) Điểm M(x; y; z) nằm ngoài mặt cầu (S) nếu (x – a)2 + (y – b)2 + (z – c)2 > R2.

Ví dụ 1. Trong không gian Oxyz, viết phương trình mặt cầu (S) có tâm I(1; −4; 0) và bán kính bằng 3.

Hướng dẫn giải

Phương trình mặt cầu là: (x – 1)2 + (y + 4)2 + z2 = 9.

Nhận xét. Với a, b, c, d là các hằng số, phương trình x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 có thể viết lại thành (x – a)2 + (y – b)2 + (z – c)2 = a2 + b2 + c2 – d và là phương trình của một mặt cầu (S) khi và chỉ khi a2 + b2 + c2 – d > 0. Khi đó, (S) có tâm I(a; b; c) và bán kính R=a2+b2+c2d

Ví dụ 2. Trong không gian với hệ tọa độ Oxyz, phương trình nào trong các phương trình sau là phương trình của mặt cầu. Xác định tâm và bán kính của mặt cầu ứng với phương trình đó.

a) x2 + y2 + z2 + x – 2y + 4z – 3 = 0.

b) x2 + y2 + z2 – 2x + 4y – 4z + 10 = 0.

Hướng dẫn giải

a) Phương trình đã cho tương ứng với a=12 ; b = 1; c = −2 và d = −3.

Có a2 + b2 + c2 – d = 334>0 .

Do đó đây là phương trình mặt cầu với tâm I12;1;2;R=332 .

b) Phương trình đã cho tương ứng với a = 1; b = −2; c = 2; d = 10.

Có a2 + b2 + c2 – d = −1 < 0 nên đây không phải là phương trình mặt cầu.

Xem thêm các bài giải SBT Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Đánh giá

0

0 đánh giá