Sử dụng phương pháp hình thang, tính gần đúng Tích phân từ 1 đến 2 của (e^x/x)dx với độ chính xác 0,01

74

Với giải Thực hành 2 trang 84 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Tính nguyên hàm và tích phân với phần mềm GeoGebra. Tính gần đúng tích phân bằng phương pháp hình giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Tính nguyên hàm và tích phân với phần mềm GeoGebra. Tính gần đúng tích phân bằng phương pháp hình

Thực hành 2 trang 84 Toán 12 Tập 2: Sử dụng phương pháp hình thang, tính gần đúng 12exxdx với độ chính xác 0,01.

Lời giải:

1. Ta có: fx=exx

f'x=exx'=exxexx2=1x1x2 ex;

 f''x=1x1x2 ex'=1x2x2+2x3ex

f'''x=1x2x2+2x3ex'=1x3x2+6x36x4ex

f'''(x) = 0 thì x ≈ 1,596.

Ta có f''(1) = e; f''(1,596) ≈ 0,333 ∙ e1,569; f''(2) = e24

Do đó, M=maxx1;2f''x=e

2. Ta cần tìm n sao cho:

213e12n2<0,01e12n2<0,01n>25e3.

Do đó, ta chọn n = 5.

3. Chia đoạn [1; 2] thành 5 đoạn có độ dài bằng nhau là [1; 1,2], [1,2; 1,4], [1,4; 1,6], [1,6; 1,8], [1,8; 2].

Áp dụng công thức hình thang, ta có:

12exxdx2125e11+2e1,21,2+2e1,41,4+2e1,61,6+2e1,81,8+e22≈ 3,065.

Đánh giá

0

0 đánh giá