Tailieumoi.vn giới thiệu giải bài tập Chuyên đề Toán 10 Bài 4: Ba đường conic hay, chi tiết sách Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề học tập Toán 10. Mời các bạn đón xem:
Giải bài tập Chuyên đề Toán 10 Bài 4: Ba đường conic
I. Mô tả đường cong conic dựa trên tiêu điểm và đường chuẩn
Lời giải:
- Với mọi điểm M thuộc elip (E): (a > b >0), ta luôn có (0 < e < 1), trong đó F là một trong hai tiêu điểm F1, F2 và Δ là đường chuẩn ứng với tiêu điểm F.
- Với mọi điểm M thuộc hypebol (H): (a > 0, b > 0), ta luôn có (e > 1), trong đó F là một trong hai tiêu điểm F1, F2 và Δ là đường chuẩn ứng với tiêu điểm F.
- Với mọi điểm M thuộc parabol (P): y2 = 2px (p > 0), ta luôn có , trong đó F là tiêu điểm và Δ là đường chuẩn ứng với tiêu điểm F.
a) Viết phương trình chính tắc của elip nhận ABCD là hình chữ nhật cơ sở. Vẽ elip đó.
b) Viết phương trình chính tắc của hypebol nhận ABCD là hình chữ nhật cơ sở. Vẽ hypebol đó
Lời giải:
Gọi M, N lần lượt là trung điểm của AB, BC.
a) Gọi phương trình chính tắc của elip cần tìm là (a > b > 0).
Vì ABCD là hình chữ nhật cơ sở của elip nên M, N là hai đỉnh của elip.
Lại có: M(0; 3) b = 3, N(4; 0) a = 4.
Vậy phương trình chính tắc của elip cần tìm là
+) Vẽ elip:
Ta thấy a = 4, b = 3. Toạ độ các đỉnh của elip là (–4; 0), (5; 0), (0; – 3), (0; 3).
Bước 1. Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn đường thẳng x = –4, x = 4, y = –3, y = 3.
Bước 2. Tìm một số điểm cụ thể thuộc elip, chẳng hạn ta thấy điểm và điểm thuộc (E). Do đó các điểm
cũng thuộc (E)
Bước 3. Vẽ đường elip (E) đi qua các điểm cụ thể trên, nằm ở phía trong hình chữ nhật cơ sở và tiếp xúc với các cạnh của hình chữ nhật cơ sở tại bốn đỉnh của (E) là
(–4; 0), (4; 0), (0; –3), (0; 3).
b)
Gọi phương trình chính tắc của hypebol cần tìm là (a > 0, b > 0).
Vì M(0; 3) và N(4;0) là trung điểm các cạnh của hình chữ nhật cơ sở nên a = 4, b = 3.
Vậy phương trình chính tắc của hypebol cần tìm là
+) Vẽ hypebol:
Ta thấy a = 4, b = 3. (H) có các đỉnh là (–4; 0), (4; 0).
Bước 1. Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn đường thẳng x = –4, x = 4, y = –3, y = 3.
Bước 2. Vẽ hai đường chéo của hình chữ nhật cơ sở.
Tim một số điểm cụ thể thuộc hypebol, chẳng hạn ta thấy điểm thuộc (H). Do đó các điểm thuộc (H).
Bước 3. Vẽ đường hypebol bên ngoài hình chữ nhật cơ sở; nhánh bên trái tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm (–4; 0) và đi qua X2, X3; nhánh bên phải tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm (4; 0) và đi qua X, X1. Vẽ các điểm thuộc hypebol càng xa gốc toạ độ thì càng sát với đường tiệm cận. Hypebol nhận gốc toạ độ là tâm đối xứng và hai trục toạ độ là hai trục đối xứng.
Lời giải:
a) Đây là đường elip.
Ta có a = 10, b = 8
Độ dài trục lớn là 2a = 20, độ dài trục bé là 2b = 16.
Toạ độ các tiêu điểm là F1(–6; 0) và F2(6; 0).
Tiêu cự là 2c = 12.
Tâm sai là
b) Đây là đường hypebol.
Ta có a = 6, b = 8
Độ dài trục thực là 2a = 12, độ dài trục ảo là 2b = 16.
Toạ độ các tiêu điểm là F1(–10; 0) và F2(10; 0).
Tiêu cự là 2c = 20.
Tâm sai là
Lời giải:
Ta có: 2p = 2
Vậy tiêu điểm của parabol là và đường chuẩn của parabol là
Vẽ parabol:
Bước 1. Lập bảng giá trị
Chú ý rằng ứng với mỗi giá trị dương của x có hai giá trị của y đối nhau.
Bước 2. Vẽ các điểm cụ thể mà hoành độ và tung độ được xác định như trong bảng giá trị.
Bước 3. Vẽ parabol bên phải trục Oy, đỉnh O, trục đối xứng là Ox, parabol đi qua các điểm được vẽ ở Bước 2.
a) Tính các tỉ số sau:
b) Hỏi mỗi điểm A, B, C lần lượt nằm trên loại đường conic nào nhận F là tiêu điểm và Δ là đường chuẩn ứng với tiêu điểm đó?
Lời giải:
a) Ta viết lại phương trình đường thẳng Δ: x + 0 . y + 5 = 0. Khi đó:
b)
– Vì
nên A nằm trên elip nhận F là tiêu điểm và Δ là đường chuẩn ứng với tiêu điểm đó.
– Vì
nên A nằm trên hypebol nhận F là tiêu điểm và Δ là đường chuẩn ứng với tiêu điểm đó.
– Vì
nên A nằm trên parabol nhận F là tiêu điểm và Δ là đường chuẩn.
Lời giải:
Chọn hệ trục toạ độ sao cho tâm Trái Đất trùng với tiêu điểm F1 của elip.
Khi đó elip có phương trình là
(a > b > 0).
Theo đề bài, ta có: vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1342 dặm, mà bán kính của Trái Đất xấp xỉ 4000 dặm nên vệ tinh cách tâm Trái Đất gần nhất là 583 + 4000 = 4583 dặm và xa nhất là 1342 + 4000 = 5342 dặm.
Giả sử vệ tinh có toạ độ là M(x; y).
Khi đó khoảng cách từ vệ tinh đến tâm Trái Đất là: MF1 = a + x.
Vì –a ≤ x ≤ a nên a – c ≤ MF1 ≤ a + c.
Vậy khoảng cách nhỏ nhất và lớn nhất từ vệ tinh đến tâm Trái Đất lần lượt là a – c và a + c.
Vậy tâm sai của quỹ đạo này xấp xỉ 0,076.
Tìm khoảng cách nhỏ nhất (gần đúng) giữa Sao Diêm Vương và Mặt Trời.
Lời giải:
Chọn hệ trục toạ độ sao cho Mặt Trời trùng với tiêu điểm F1 của elip.
Khi đó elip có phương trình là
(a > b > 0).
Theo đề bài, ta có: elip này có bán trục lớn a ≈ 5,906 . 106 km và tâm sai e ≈ 0,249
Giả sử Sao Diêm Vương có toạ độ là M(x; y).
Khi đó khoảng cách giữa Sao Diêm Vương và Mặt Trời là: MF1 = a + ex.
Vì x ≥ –a nên MF1 ≥ a – ea ≈ 5,906 . 106 – 0,249 . 5,906 . 106 = 4435406 (km).
Vậy khoảng cách nhỏ nhất giữa Sao Diêm Vương và Mặt Trời xấp xỉ 4435406 km.
Với mỗi điểm M di động trong mặt phẳng, gọi K là hình chiếu vuông góc của M lên Δ. Chứng minh tập hợp các điểm M trong mặt phẳng sao cho MK2 – MO2 = 1 là một đường parabol.
Lời giải:
Chọn hệ trục toạ độ sao cho điểm O trùng với gốc toạ độ và trục Ox trùng với đường thẳng OH.
Giả sử M có toạ độ (x; y) thì K có toạ độ là (–1; y).
Khi đó:
MK2 – MO2 = 1
Vậy tập hợp các điểm M là parabol có phương trình y2 = 2x.