Với giải Bài 1 trang 66 Chuyên đề Toán 10 Cánh diều chi tiết trong Bài 4: Ba đường conic giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:
Giải bài tập Chuyên đề Toán lớp 10 Bài 4: Ba đường conic
Bài 1 trang 66 Chuyên đề Toán 10: Cho hình chữ nhật ABCD với bốn đỉnh A(–4; 3), B(4; 3), C(4; –3), D(–4; –3).
a) Viết phương trình chính tắc của elip nhận ABCD là hình chữ nhật cơ sở. Vẽ elip đó.
b) Viết phương trình chính tắc của hypebol nhận ABCD là hình chữ nhật cơ sở. Vẽ hypebol đó
Lời giải:
Gọi M, N lần lượt là trung điểm của AB, BC.
a) Gọi phương trình chính tắc của elip cần tìm là (a > b > 0).
Vì ABCD là hình chữ nhật cơ sở của elip nên M, N là hai đỉnh của elip.
Lại có: M(0; 3) b = 3, N(4; 0) a = 4.
Vậy phương trình chính tắc của elip cần tìm là
+) Vẽ elip:
Ta thấy a = 4, b = 3. Toạ độ các đỉnh của elip là (–4; 0), (5; 0), (0; – 3), (0; 3).
Bước 1. Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn đường thẳng x = –4, x = 4, y = –3, y = 3.
Bước 2. Tìm một số điểm cụ thể thuộc elip, chẳng hạn ta thấy điểm và điểm thuộc (E). Do đó các điểm
cũng thuộc (E)
Bước 3. Vẽ đường elip (E) đi qua các điểm cụ thể trên, nằm ở phía trong hình chữ nhật cơ sở và tiếp xúc với các cạnh của hình chữ nhật cơ sở tại bốn đỉnh của (E) là
(–4; 0), (4; 0), (0; –3), (0; 3).
b)
Gọi phương trình chính tắc của hypebol cần tìm là (a > 0, b > 0).
Vì M(0; 3) và N(4;0) là trung điểm các cạnh của hình chữ nhật cơ sở nên a = 4, b = 3.
Vậy phương trình chính tắc của hypebol cần tìm là
+) Vẽ hypebol:
Ta thấy a = 4, b = 3. (H) có các đỉnh là (–4; 0), (4; 0).
Bước 1. Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn đường thẳng x = –4, x = 4, y = –3, y = 3.
Bước 2. Vẽ hai đường chéo của hình chữ nhật cơ sở.
Tim một số điểm cụ thể thuộc hypebol, chẳng hạn ta thấy điểm thuộc (H). Do đó các điểm thuộc (H).
Bước 3. Vẽ đường hypebol bên ngoài hình chữ nhật cơ sở; nhánh bên trái tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm (–4; 0) và đi qua X2, X3; nhánh bên phải tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm (4; 0) và đi qua X, X1. Vẽ các điểm thuộc hypebol càng xa gốc toạ độ thì càng sát với đường tiệm cận. Hypebol nhận gốc toạ độ là tâm đối xứng và hai trục toạ độ là hai trục đối xứng.
'
Xem thêm các bài giải Chuyên đề Toán lớp 10 Cánh diều hay, chi tiết khác: