Với giải Thực hành 3 trang 90 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Vẽ đồ thị hàm số bằng phần mềm Geogebra giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 1: Vẽ đồ thị hàm số bằng phần mềm Geogebra
Thực hành 3 trang 90 Toán 12 Tập 1: Vẽ đồ thị các hàm số sau:
a) y = ; b) y = ; c) y = .
Lời giải:
a) y =
- Tạo các thanh trượt biểu thị các tham số a, b, c, m, n
- Nhập hàm số y = vào vùng nhập lệnh.
- Nhập hai đường tiệm cận x = 1; y = x + 2.
- Ta vẽ được đồ thị hàm số như hình vẽ sau
Nhận xét
Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Hàm số nghịch biến trên các khoảng (0; 1) và (1; 2).
Đồ thị hàm số nhận x = 1 làm tiệm cận đứng và y = x + 2 làm tiệm cân xiên.
Đồ thị hàm số nhận (1; 3) làm tâm đối xứng.
b) y =
- Tạo các thanh trượt biểu thị các tham số a, b, c, m, n
- Nhập hàm số y = vào vùng nhập lệnh.
- Nhập hai đường tiệm cận x = 1; y = −x.
- Ta vẽ được đồ thị hàm số như hình vẽ sau
Nhận xét
Hàm số nghịch biến trên các khoảng (−∞; 0) và (2; +∞).
Hàm số đồng biến trên các khoảng (0; 1) và (1; 2).
Đồ thị hàm số nhận x = 1 làm tiệm cận đứng và y = −x làm tiệm cận xiên.
Đồ thị hàm số nhận (1; −1) làm tâm đối xứng.
c)
- Tạo các thanh trượt biểu thị các tham số a, b, c, m, n
- Nhập hàm số vào vùng nhập lệnh.
- Nhập hai đường tiệm cận x = −1; y = x + 2.
- Ta vẽ được đồ thị hàm số như hình vẽ sau
Nhận xét
Hàm số đồng biến trên các khoảng (−∞; −1) và (−1; +∞).
Đồ thị hàm số nhận x = −1 làm tiệm cận đứng và y = x + 2 làm tiệm cận xiên.
Đồ thị hàm số nhận (−1; 1) làm tâm đối xứng.
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số bậc ba sau:.......
Thực hành 2 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số sau:......
Thực hành 3 trang 90 Toán 12 Tập 1: Vẽ đồ thị các hàm số sau:......
Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 1. Vẽ đồ thị hàm số bằng phần mềm Geogebra
Bài 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số bằng máy tính cầm tay