Với giải Bài 5 trang 43 Toán 12 Tập 1 Cánh diều chi tiết trong Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 5 trang 43 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) y = 2x3 – 3x2 + 1;
b) y = – x3 + 3x2 – 1;
c) y = (x – 2)3 + 4;
d) y = – x3 + 3x2 – 3x + 2;
e)
g) y = – x3 – 3x.
Lời giải:
a) y = 2x3 – 3x2 + 1
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = +, y = - .
● y' = 6x2 – 6x;
y' = 0 ⇔ 6x2 – 6x = 0 ⇔ x = 0 hoặc x = 1.
● Bảng biến thiên:
Hàm số đã cho đồng biến trên mỗi khoảng (– ∞; 0) và (1; + ∞); nghịch biến trên khoảng (0; 1).
Hàm số đạt cực đại tại x = 0, yCĐ = 1; đạt cực tiểu tại x = 1, yCT = 0.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; 1).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình 2x3 – 3x2 + 1 = 0 ta được x = hoặc x = 1.
Vậy đồ thị hàm số giao với trục hoành tại các điểm , (1; 0).
● Đồ thị hàm số đi qua các điểm (1; 0), (0; 1), , (– 1; – 4) và .
Vậy đồ thị hàm số y = 2x3 – 3x2 + 1 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I.
b) y = – x3 + 3x2 – 1
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = – ∞, y = + ∞.
● y' = – 3x2 + 6x;
y' = 0 ⇔ – 3x2 + 6x = 0 ⇔ x = 0 hoặc x = 2.
● Bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng (0; 2); nghịch biến trên mỗi khoảng (– ∞; 0) và (2; + ∞).
Hàm số đạt cực đại tại x = 2, yCĐ = 3; đạt cực tiểu tại x = 0, yCT = – 1.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; – 1).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình – x3 + 3x2 – 1 = 0, ta thấy phương trình có 3 nghiệm phân biệt nên đồ thị hàm số cắt trục hoành tại 3 điểm.
● Đồ thị hàm số đi qua các điểm (– 1; 3), (0; – 1), (1; 1), (2; 3) và (3; – 1).
Vậy đồ thị hàm số y = – x3 + 3x2 – 1 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(1; 1).
c) Ta có y = (x – 2)3 + 4 = x3 – 6x2 + 12x – 8 + 4 = x3 – 6x2 + 12x – 4.
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = +, y = - .
● y' = 3x2 – 12x + 12 = 3(x – 2)2;
y' ≥ 0 với mọi x ∈ ℝ.
y' = 0 khi x = 2.
● Bảng biến thiên:
Hàm số đồng biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; – 4).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình x3 – 6x2 + 12x – 4 = 0, ta thấy phương trình có 1 nghiệm nên đồ thị hàm số cắt trục hoành tại 1 điểm.
● Đồ thị hàm số đi qua các điểm (0; – 4), (1; 3), (2; 4) và (3; 5).
Vậy đồ thị hàm số y = (x – 2)3 + 4 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(2; 4).
d) y = – x3 + 3x2 – 3x + 2
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = – ∞, y = + ∞.
● y' = – 3x2 + 6x – 3 = – 3(x – 1)2 ≤ 0 với mọi x ∈ ℝ;
y' = 0 khi x = 1.
● Bảng biến thiên:
Hàm số đã cho nghịch biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; 2).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình – x3 + 3x2 – 3x + 2 = 0 ta được x = 2.
Vậy đồ thị hàm số cắt trục hoành tại điểm (2; 0).
● Đồ thị hàm số đi qua các điểm (0; 2), (2; 0) và (1; 1).
Vậy đồ thị hàm số y = – x3 + 3x2 – 3x + 2 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(1; 1).
e)
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = + ∞, y = - ∞.
● y' = x2 + 2x + 2 = (x + 1)2 + 1 > 0 với mọi x ∈ ℝ;
● Bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; 1).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình = 0 ta thấy có 1 nghiệm nên đồ thị hàm số cắt trục hoành tại 1 điểm.
● Đồ thị hàm số đi qua các điểm (0; 1), .
Vậy đồ thị hàm số y = được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I.
g) y = – x3 – 3x
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = - ∞, y = + ∞.
● y' = – 3x2 – 3 = – 3(x2 + 1) < 0 với mọi x ∈ ℝ;
● Bảng biến thiên:
Hàm số đã cho nghịch biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
● Đồ thị hàm số đi qua gốc tọa độ O(0; 0).
● Đồ thị hàm số đi qua các điểm (0; 0), (– 1; 4) và (1; – 4).
Vậy đồ thị hàm số y = – x3 – 3x được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm O(0; 0).
Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Luyện tập 1 trang 29 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số .......
Luyện tập 2 trang 30 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:......
Luyện tập 3 trang 31 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số ........
Luyện tập 4 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số .......
Luyện tập 5 trang 34 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số ........
Luyện tập 6 trang 35 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số .........
Bài 2 trang 42 Toán 12 Tập 1: Đường cong ở Hình 29 là đồ thị của hàm số:......
Bài 3 trang 43 Toán 12 Tập 1: Đường cong nào sau đây là đồ thị của hàm số ?........
Bài 4 trang 43 Toán 12 Tập 1: Đường cong ở Hình 30 là đồ thị của hàm số:......
Bài 5 trang 43 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:......
Bài 6 trang 43 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:......
Bài 8 trang 44 Toán 12 Tập 1: Xét phản ứng hóa học tạo ra chất C từ hai chất A và B:......
Xem thêm các bài giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
§3. Đường tiệm cận của đồ thị hàm số
§4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Chủ đề 1. Một số vấn đề về thuế