Với giải Bài 12 trang 38 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 1 trang 37 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài tập cuối chương 1 trang 37
Bài 12 trang 38 Toán 12 Tập 1: Cho hàm số .
a) Khảo sát và vẽ đồ thị của hàm số.
b) Gọi A là giao điểm của đồ thị hàm số với trục Oy, I là giao điểm của hai đường tiệm cận của đồ thị hàm số. Tìm điểm B đối xứng với A qua I. Chứng minh rằng điểm B cũng thuộc đồ thị hàm số này.
Lời giải:
a) Xét hàm số .
1. Tập xác định: D = ℝ\{1}.
2. Sự biến thiên:
● Chiều biến thiên:
Đạo hàm y' = . Vì y' < 0 với mọi x ≠ 1 nên hàm số nghịch biến trên mỗi khoảng (– ∞; 1) và (1; + ∞).
● Tiệm cận:
Ta có . Suy ra đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
Ta có . Suy ra đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
● Bảng biến thiên:
3. Đồ thị:
Với x = 0 thì y = – 1 nên đồ thị hàm số giao với trục Oy tại điểm (0; – 1).
Với y = 0 thì x = nên đồ thị hàm số giao với trục Ox tại điểm .
Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.
Tâm đối xứng của đồ thị hàm số là điểm I(1; 2). Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 1 và y = 2.
b) Ta có A(0; – 1), I(1; 2).
Vì B đối xứng với A qua I nên I là trung điểm của AB.
Khi đó, tọa độ của điểm B là . Suy ra B(2; 5).
Ta có , do đó điểm B(2; 5) thuộc đồ thị hàm số .
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 2 trang 37 Toán 12 Tập 1: Cho hàm số y = f(x) có đồ thị như Hình 1.......
Bài 3 trang 37 Toán 12 Tập 1: Cho hàm số . Trong các khẳng định sau, khẳng định nào đúng?.....
Bài 5 trang 37 Toán 12 Tập 1: Giá trị nhỏ nhất của hàm số trên đoạn [– 2; 3] là.....
Bài 6 trang 37 Toán 12 Tập 1: Tiệm cận xiên của đồ thị hàm số là đường thẳng có phương trình......
Bài 7 trang 37 Toán 12 Tập 1: Tiệm cận đứng của đồ thị hàm số là đường thẳng có phương trình.......
Bài 8 trang 38 Toán 12 Tập 1: Cho hàm số . Trong các khẳng định sau, khẳng định nào đúng?.......
Bài 9 trang 38 Toán 12 Tập 1: Tìm hai số không âm a và b có tổng bằng 10 sao cho:......
Bài 11 trang 38 Toán 12 Tập 1: Cho hàm số .......
Bài 12 trang 38 Toán 12 Tập 1: Cho hàm số .......
Bài 13 trang 38 Toán 12 Tập 1: Cho hàm số .......
Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 4. Khảo sát và vẽ đồ thị một số hàm số cơ bản
Bài 1. Vectơ và các phép toán trong không gian
Bài 2. Toạ độ của vectơ trong không gian