Với giải Bài 2 trang 36 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản
Bài 2 trang 36 Toán 12 Tập 1: Cho hàm số y = x3 – 3x2 + 2.
a) Tìm điểm I thuộc đồ thị hàm số biết hoành độ của I là nghiệm của phương trình y" = 0.
b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.
Lời giải:
a) Xét hàm số y = x3 – 3x2 + 2. Tập xác định của hàm số là D = ℝ.
Ta có y' = 3x2 – 6x; y" = 6x – 6;
y" = 0 ⇔ x = 1.
Với x = 1, ta có y(1) = 0.
Vậy I(1; 0).
b) Ta có y' = 0 ⇔ 3x2 – 6x = 0 ⇔ x = 0 hoặc x = 2.
Bảng biến thiên:
Do đó, hàm số đạt cực đại tại x = 0, giá trị cực đại là yCĐ = 2; hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là yCT = – 2.
Hai điểm cực trị của đồ thị hàm số là (0; 2) và (2; – 2).
Ta thấy . Vậy điểm I(1; 0) là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Hoạt động khám phá trang 25 Toán 12 Tập 1: Cho hàm số y = – x2 + 4x – 3.......
Thực hành 1 trang 28 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:.......
Thực hành 2 trang 30 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:......
Thực hành 3 trang 32 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:.....
Bài 1 trang 36 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:......
Bài 2 trang 36 Toán 12 Tập 1: Cho hàm số y = x3 – 3x2 + 2........
Bài 3 trang 36 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:......
Bài 4 trang 36 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:.....
Bài 5 trang 36 Toán 12 Tập 1: Cho hàm số .......
Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 3. Đường tiệm cận của đồ thị hàm số
Bài 4. Khảo sát và vẽ đồ thị một số hàm số cơ bản
Bài 1. Vectơ và các phép toán trong không gian