Giải Toán 8 trang 123 Tập 2 Kết nối tri thức

119

Với lời giải Toán 8 trang 123 Tập 2 chi tiết trong Bài tập cuối chương 10 sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài tập cuối chương 10

Bài 10.15 trang 123 Toán 8 Tập 2: Trung đoạn của hình chóp tam giác đều trong Hình 10.34 là:

A. SB.

B. SH.

C. SI.

D. HI.

Bài 10.15 trang 123 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Lời giải:

Đáp án đúng là C

Trung đoạn là SI.

Bài 10.16 trang 123 Toán 8 Tập 2: Đáy của hình chóp tứ giác đều là:

A. Hình vuông.

B. Hình bình hành.

C. Hình thoi.

D. Hình chữ nhật.

Lời giải:

Đáp án đúng là A

Đáy của hình chóp tứ giác đều là hình vuông.

Bài 10.17 trang 123 Toán 8 Tập 2: Diện tích xung quanh của hình chóp tam giác đều bằng:

A. Tích của nửa chu vi đáy và chiều cao của hình chóp.

B. Tích của nửa chu vi đáy và trung đoạn.

C. Tích của chu vi đáy và trung đoạn.

D. Tổng của chu vi đáy và trung đoạn.

Lời giải:

Đáp án đúng là B

Diện tích xung quanh của hình chóp tam giác đều bằng tích của nửa chu vi đáy và trung đoạn.

Bài 10.18 trang 123 Toán 8 Tập 2: Một hình chóp tam giác có chiều cao h, thể tích V. Diện tích đáy S là:

A. S=hV .

B. S=Vh.

C. S=3Vh.

D. S=3hV .

Lời giải:

Đáp án đúng là C

Ta có: V=13ShS=3Vh.

Tự luận

Bài 10.19 trang 123 Toán 8 Tập 2: Gọi tên đỉnh, cạnh bên, cạnh đáy, đường cao và một trung đoạn của hình chóp tam giác đều, hình chóp tứ giác đều trong Hình 10.35.

Bài 10.19 trang 123 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Lời giải:

Hình chóp tam giác đều S.DEF

– Đỉnh: S.

– Cạnh bên: SD, SE, SF.

– Cạnh đáy: DE, DF, EF.

– Đường cao: SO.

– Một trung đoạn: SH.

Hình chóp tứ giác đều S.ABCD

– Đỉnh: S.

– Cạnh bên: SA, SB, SC, SD.

– Cạnh đáy: AB, BC, CD, AD.

– Đường cao: SI.

– Một trung đoạn: SH.

Bài 10.20 trang 123 Toán 8 Tập 2: Tính diện tích xung quanh của hình chóp tam giác đều, hình chóp tứ giác đều trong Hình 10.36.

Bài 10.20 trang 123 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Lời giải:

a) Nửa chu vi của tam giác ABC là: (12 + 12 + 12) : 2 = 18 (đvđd).

Ta có BH = HA = AB2=122=6  (đvđd).

Xét tam giác HBD vuông tại H, theo định lí Pythagore suy ra: 

HD2 = BD2 – BH2 = 82 – 62 = 28.

Suy ra HD = 28  (đvđd).

Diện tích xung quanh của hình chóp tam giác đều là 

Sxq = p . d = 18 . 28 = 1828  (đvdt).

b) Nửa chu vi hình vuông ABCD là: (10 . 4) : 2 = 20 (đvđd).

Ta có CH = HD = CD2=102=5  (đvđd).

Xét tam giác SHD vuông tại H, theo định lí Pythagore suy ra: 

SH2 = SD2 – HD2 = 122 – 52 = 119.

Suy ra SH = 119(đvđd).

Diện tích xung quanh của hình chóp tứ giác đều là

Sxq = p . d = 20 . 119=20119  (đvdt).

Đánh giá

0

0 đánh giá