Với lời giải Toán 11 trang 49 Tập 2 chi tiết trong Bài 2: Các quy tắc tính đạo hàm sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm
Bài 2 trang 49 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:
a) y = sin3x;
b) y = cos32x;
c) y = tan2x;
d) y = cot(4 – x2).
Lời giải:
a) y' = (sin3x)' = cos3x×(3x)' = 3cos3x.
b) y' = (cos32x)' = 3cos22x(cos2x)' = −6cos22xsin2x.
c) y' = (tan2x)' = 2tanx×(tanx)'
= = 2tanx(1 + tan2x).
d) y' = [cot(4 – x2)]' = .
Bài 3 trang 49 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:
a) y = (x2 – x)×2x;
b) y = x2log3x;
c) y = e3x + 1.
Lời giải:
a) y' = [(x2 – x)×2x]' = (x2 – x)'×2x + (x2 – x)×(2x)'
= (2x – 1)×2x + (x2 – x)×2x×ln2
= 2x(x2ln2 + 2x – 1 – xln2).
b) y' = (x2log3x)' = (x2)'log3x + x2(log3x)'
= 2xlog3x + = .
c) y' = (e3x + 1)' = e3x + 1×(3x + 1)' = 3e3x + 1.
Bài 4 trang 49 Toán 11 Tập 2: Tính đạo hàm cấp hai của các hàm số sau:
a) y = 2x4 – 5x2 + 3;
b) y = xex.
Lời giải:
a) y' = (2x4 – 5x2 + 3)' = 8x3 – 10x.
y" = (8x3 – 10x)' = 24x2 – 10.
Vậy y" = 24x2 – 10.
b) y' = (xex)' = x'ex + x×(ex)' = ex + xex.
y" = (ex + xex)' = ex + ex + xex = 2ex + xex.
Vậy y" = 2ex + xex.
Lời giải:
Tốc độ thay đổi cân nặng của bé gái đó tại thời điểm t là:
w'(t) = (0,000758t3 – 0,0596t2 + 1,82t + 8,15)' = 0,002274t2 – 0,1192t + 1,82.
Tốc độ thay đổi cân nặng của bé gái đó tại thời điểm 10 tháng tuổi là:
w'(10) = 0,002274×(10)2 – 0,1192×10 + 1,82. = 0,8554 (pound/tháng).
Vậy tốc độ thay đổi cân nặng của bé gái đó tại thời điểm 10 tháng tuổi là 0,8554 pound/tháng.
Lời giải:
Ta có .
Có x'(t) = (20t + 40)' = 20; x(4) = 120.
Khi đó, tốc độ tăng chi phí của công ty sau t tháng là: C'(x(t)) = C'(x)×x'(t).
Tốc độ tăng chi phí của công ty sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó là:
C'(x(4)) = C'(120)×x'(4) (nghìn đô-la/tháng).
Tốc độ tăng chi phí của công ty sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó khoảng 44,7 nghìn đô/tháng.
a) Quãng đường vật đã rơi;
b) Gia tốc của vật.
Lời giải:
a) Quãng đường vật đã rơi tại thời điểm t = 2 là: s(2) = 0,81×22 = 3,24 (m).
Vậy sau 2 giây vật đã rơi được 3,24 m.
b) Có v(t) = s'(t) = (0,81t2)' = 1,62t.
a(t) = v'(t) = (1,62t)' = 1,62.
Vậy gia tốc của vật tại thời điểm t = 2 là 1,62 m/s2.
Xem thêm các lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 43 Toán 11 Tập 2: Tính đạo hàm của hàm số y = x10 tại x = −1 và ...
Thực hành 3 trang 43 Toán 11 Tập 2: Tìm đạo hàm của các hàm số:..
Thực hành 4 trang 44 Toán 11 Tập 2: Tính đạo hàm của hàm số y = tanx tại ...
Thực hành 5 trang 44 Toán 11 Tập 2: Tính đạo hàm của các hàm số...
Thực hành 6 trang 46 Toán 11 Tập 2: Tính đạo hàm của các hàm số:...
Hoạt động khám phá 6 trang 46 Toán 11 Tập 2: Cho hàm số u = sinx và hàm số y = u2...
Thực hành 7 trang 47 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:...
Thực hành 8 trang 48 Toán 11 Tập 2: Tính đạo hàm cấp hai của các hàm số sau:...
Bài 1 trang 48 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:...
Bài 2 trang 49 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:...
Bài 3 trang 49 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:...
Bài 4 trang 49 Toán 11 Tập 2: Tính đạo hàm cấp hai của các hàm số sau:...
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: