Bài 6 trang 49 Toán 11 Tập 2 Chân trời sáng tạo | Giải bài tập Toán lớp 11

422

Với giải Bài 6 trang 49 Toán 11 Tập 2 Chân trời sáng tạo chi tiết trong Bài 2: Các quy tắc tính đạo hàm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Các quy tắc tính đạo hàm

Bài 6 trang 49 Toán 11 Tập 2: Một công ty xác định rằng tổng chi phí của họ, tính theo nghìn đô-la, để sản xuất x mặt hàng là C(x)=5x2+60 và công ty lên kế hoạch nâng sản lượng trong t tháng kể từ nay theo hàm số x(t) = 20t + 40. Chi phí sẽ tăng nhanh thế nào sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó?

Lời giải:

Ta có C'(x)=5x2+60'=5x2+60'25x2+60=10x25x2+60=5x5x2+60.

Có x'(t) = (20t + 40)' = 20; x(4) = 120.

Khi đó, tốc độ tăng chi phí của công ty sau t tháng là: C'(x(t)) = C'(x)×x'(t).

Tốc độ tăng chi phí của công ty sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó là:

C'(x(4)) = C'(120)×x'(4) =512051202+602044,7 (nghìn đô-la/tháng).

Tốc độ tăng chi phí của công ty sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó khoảng 44,7 nghìn đô/tháng.

Đánh giá

0

0 đánh giá