Giải Toán 11 trang 62 Tập 2 Kết nối tri thức

355

Với lời giải Toán 11 trang 62 Tập 2 chi tiết trong Bài 27: Thể tích sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 27: Thể tích

Luyện tập 1 trang 62 Toán 11 Tập 2: Cho khối chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng b. Tính thể tích của khối chóp.

Lời giải:

Luyện tập 1 trang 62 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Gọi O là giao điểm của AC và BD. Vì S.ABCD là hình chóp đều nên SO  (ABCD).

Xét tam giác BCD vuông tại C, có BD = BC2+CD2=a2+a2=a2 .

Vì ABCD là hình vuông nên O là trung điểm của BD, suy ra BO = BD2=a22 .

Xét tam giác SOB vuông tại O, có SO = SB2OB2=b2a22 .

Ta có VS.ABCD=13SABCDSO=13a2b2a22=13a22b2a22

Luyện tập 2 trang 62 Toán 11 Tập 2: Cho khối chóp cụt đều ABC.A'B'C' có đường cao HH' = h, hai mặt đáy ABC, A'B'C' có cạnh tương ứng bằng 2a, a.

a)Tính thể tích khối chóp cụt.

b) Gọi B1, C1 tương ứng là trung điểm AB, AC. Chứng minh rằng AB1C1.A'B'C' là một hình lăng trụ. Tính thể tích khối lăng trụ AB1C1.A'B'C'.

Luyện tập 2 trang 62 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

a) Ta có SA'B'C'=a234 ; SABC=2a234=a23 .

Khi đó VABC.A'B'C'=13SABC+SA'B'C'+SABCSA'B'C'HH'

=13a23+a234+a23a234h

=13a23+a234+a232h.

b) Vì ABC.A'B'C' là khối chóp cụt đều nên (ABC) // (A'B'C') mà (AB1C1)  (ABC) nên (AB1C1) // (A'B'C').

Xét tam giác ABC có B1, C1 lần lượt là trung điểm của AB, AC nên B1C1 là đường trung bình của tam giác ABC do đó B1C1 // BC và B1C1 = BC2=2a2=a.

Lại có B'C' // BC nên B1C1 // B'C' và B'C' = B1C1 = a nên B1C1C'B' là hình bình hành.

Vì B1, C1 lần lượt là trung điểm của AB, AC nên AB1 = AC1 = a.

Vì A'B' // AB1 và A'B' = AB1 = a nên A'B'B1A là hình bình hành.

Vì A'C' // AC1 và A'C' = AC1 = a nên A'C'C1A là hình bình hành.

Do đó AB1C1.A'B'C' là hình lăng trụ.

Vì hình lăng trụ AB1C1.A'B'C' có cùng chiều cao với khối chóp cụt đều ABC.A'B'C' nên VAB1C1.A'B'C'=SA'B'C'.HH'=a234h .

Đánh giá

0

0 đánh giá