Giải Toán 11 trang 30 Tập 2 Kết nối tri thức

379

Với lời giải Toán 11 trang 30 Tập 2 chi tiết trong Bài 22: Hai đường thẳng vuông góc sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 22: Hai đường thẳng vuông góc

Luyện tập trang 30 Toán 11 Tập 2: Cho tam giác MNP vuông tại N và một điểm A nằm ngoài mặt phẳng (MNP). Lần lượt lấy các điểm B, C, D sao cho M, N, P tương ứng là trung điểm của AB, AC, CD (H.7.7). Chứng minh rằng AD và BC vuông góc với nhau và chéo nhau.

Luyện tập trang 30 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Xét tam giác ABC có M là trung điểm của AB, N là trung điểm của AC nên MN là đường trung bình của tam giác ABC, suy ra MN // BC.

Xét tam giác ACD có N là trung điểm của AC, P là trung điểm của CD nên NP là đường trung bình của tam giác ACD, suy ra NP // AD.

Khi đó (AD, BC) = (NP, MN) = MNP^.

Do tam giác MNP vuông tại N nên MNP^=90°.

Vậy AD và BC vuông góc với nhau.

Nếu D Î (ABC) thì A Î (MNP) (vô lí).

Do đó D Ï (ABC) nên AD và BC chéo nhau.

Bài tập

Bài 7.1 trang 30 Toán 11 Tập 2: Cho hình lăng trụ ABC.A'B'C' có đáy là các tam giác đều. Tính góc (AB, B'C').

Lời giải:

Bài 7.1 trang 30 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Do ABC.A'B'C' là hình lăng trụ nên các mặt bên là hình bình hành.

Do ABB'A' là hình bình hành nên AB // A'B'.

Khi đó (AB, B'C') = (A'B', B'C') = A'B'C'^.

Do tam giác A'B'C' là tam giác đều nên A'B'C'^=60°.

Vậy (AB, B'C') = 60°.

Bài 7.2 trang 30 Toán 11 Tập 2: Cho hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau. Chứng minh rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.

Lời giải:

Bài 7.2 trang 30 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Vì hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau nên các mặt của hình hộp là hình thoi.

Vì ABB'A' là hình thoi nên AB' ^ A'B.

Có CB // A'D' và CB = A'D' (do cùng song song và bằng AD). Do đó CBA'D' là hình bình hành, suy ra CD' // BA'.

Khi đó (CD', AB') = (BA', AB') = 90°.

Vậy CD' và AB' vuông góc với nhau.

Vì ADD'A' là hình thoi nên AD' ^ A'D.

Có CD // A'B' và CD = A'B' (vì CD, A'B' cùng song song và bằng AB) nên CDA'B' là hình bình hành, suy ra CB' // DA'.

Khi đó (CB', AD') = (DA', AD') = 90°.

Vậy CB' và AD' vuông góc với nhau.

Do ABCD là hình thoi nên AC ^ BD.

Vì BB' // DD' và BB' = DD' (do BB', DD' cùng song song và bằng AA' ) nên BDD'B' là hình bình hành, suy ra BD // B'D'.

Khi đó (AC, B'D') = (AC, BD) = 90°.

Vậy AC và B'D' vuông góc với nhau.

Bài 7.3 trang 30 Toán 11 Tập 2: Cho tứ diện ABCD có CBD^=90°.

a) Gọi M, N tương ứng là trung điểm của AB, AD. Chứng minh rằng MN vuông góc với BC.

b) Gọi G, K tương ứng là trọng tâm của các tam giác ABC, ACD. Chứng minh rằng GK vuông góc với BC.

Lời giải:

Bài 7.3 trang 30 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Xét tam giác ABD, có M là trung điểm của AB, N là trung điểm của AD nên MN là đường trung bình của tam giác ABD, suy ra MN // BD.

Khi đó (MN, BC) = (BD, BC) = CBD^=90°.

Vậy MN vuông góc với BC.

b) Gọi AG cắt BC tại E, suy ra E là trung điểm BC, AK cắt CD tại F, suy ra F là trung điểm CD.

Vì G là trọng tâm tam giác ABC nên AGAE=23, K là trọng tâm tam giác ACD nên AKAF=23.

Xét tam giác AEF có AGAE=AKAF=23 nên GK // EF.

Xét tam giác BCD có E, F lần lượt là trung điểm của BC, CD nên EF là đường trung bình, suy ra EF // BD.

Vì GK // EF và EF // BD nên GK // BD mà BD ^ BC nên GK ^ BC.

Bài 7.4 trang 30 Toán 11 Tập 2: Đối với nhà gỗ truyền thống, trong các cấu kiện: hoành, quá giang, xà cái, rui, cột tương ứng được đánh số 1, 2, 3, 4, 5 như trong Hình 7.8, những cặp cấu kiện nào vuông góc với nhau?

Bài 7.4 trang 30 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Những cặp đường thẳng sau vuông góc với nhau: hoành (1) và quá giang (2); hoành (1) và rui (4); hoành (1) và cột (5); quá giang (2) và xà cái (3); quá giang (2) và cột (5); xà cái (3) và rui (4); xà cái (3) và cột (5).

Đánh giá

0

0 đánh giá