Bài 7.2 Toán 11 Tập 2 Kết nối tri thức | Giải bài tập Toán lớp 11

0.9 K

Với giải Bài 7.2 trang 30 Toán 11 Tập 2 Kết nối tri thức chi tiết trong Bài 22: Hai đường thẳng vuông góc giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 22: Hai đường thẳng vuông góc 

Bài 7.2 trang 30 Toán 11 Tập 2: Cho hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau. Chứng minh rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.

Lời giải:

Bài 7.2 trang 30 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Vì hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau nên các mặt của hình hộp là hình thoi.

Vì ABB'A' là hình thoi nên AB' ^ A'B.

Có CB // A'D' và CB = A'D' (do cùng song song và bằng AD). Do đó CBA'D' là hình bình hành, suy ra CD' // BA'.

Khi đó (CD', AB') = (BA', AB') = 90°.

Vậy CD' và AB' vuông góc với nhau.

Vì ADD'A' là hình thoi nên AD' ^ A'D.

Có CD // A'B' và CD = A'B' (vì CD, A'B' cùng song song và bằng AB) nên CDA'B' là hình bình hành, suy ra CB' // DA'.

Khi đó (CB', AD') = (DA', AD') = 90°.

Vậy CB' và AD' vuông góc với nhau.

Do ABCD là hình thoi nên AC ^ BD.

Vì BB' // DD' và BB' = DD' (do BB', DD' cùng song song và bằng AA' ) nên BDD'B' là hình bình hành, suy ra BD // B'D'.

Khi đó (AC, B'D') = (AC, BD) = 90°.

Vậy AC và B'D' vuông góc với nhau.

Đánh giá

0

0 đánh giá