Giải Toán 11 trang 11 Tập 2 Kết nối tri thức

228

Với lời giải Toán 11 trang 11 Tập 2 chi tiết trong Bài 19: Lôgarit sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 19: Lôgarit

HĐ2 trang 11 Toán 11 Tập 2: Nhận biết quy tắc tính lôgarit

Cho M = 25, N = 23. Tính và so sánh:

a) log2(MN) và log2M + log2N;

b) log2MN và log2M – log2N.

Lời giải:

a) Ta có log2(MN) = log2(25 ∙ 23) = log2(25 + 3) = log228 = 8

và log2M + log2N = log225 + log223 = 5 + 3 = 8.

Vậy log2(MN) = log2M + log2N.

b) Ta có log2MN=log22523=log2253=log222=2

và log2M – log2N = log225 – log223 = 5 – 3 = 2.

Vậy log2MN = log2M – log2N.

Luyện tập 2 trang 11 Toán 11 Tập 2: Rút gọn biểu thức:

A = log2(x3 – x) – log2(x + 1) – log2(x – 1) (x > 1).

Lời giải:

Với x > 1, ta có

A = log2(x3 – x) – log2(x + 1) – log2(x – 1)

log2x3xx+1log2x1

log2xx21x+1x1

log2xx1x+1x+1x1=log2x.

HĐ3 trang 11 Toán 11 Tập 2: Xây dựng công thức đổi cơ số của lôgarit

Giả sử đã cho logaM và ta muốn tính logbM. Để tìm mối liên hệ giữa logaM và logbM, hãy thực hiện các yêu cầu sau:

a) Đặt y = logaM, tính M theo y;

b) Lấy lôgarit theo cơ số b cả hai vế của kết quả nhận được trong câu a, từ đó suy ra
công thức mới để tính y.

Lời giải:

a) Đặt y = logaM, theo định nghĩa về lôgarit, ta suy ra M = ay.

b) Lấy lôgarit theo cơ số b cả hai vế của M = ay ta được

logbM = logbay ⇔ logbM = y logby=logbMlogba.

Đánh giá

0

0 đánh giá