Với giải Luyện tập 3 trang 56 Chuyên đề Toán 10 Kết nối tri thức chi tiết trong Bài 7: Parabol giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:
Giải bài tập Chuyên đề Toán lớp 10 Bài 7: Parabol
Luyện tập 3 trang 56 Chuyên đề Toán 10: Một sao chổi chuyền động theo quỹ đạo parabol nhận tâm Mặt Trời làm tiêu điểm. Khoảng cách ngắn nhất từ sao chổi đến tâm Mặt Trời là 106 km. Lập phương trình chính tắc của quỹ đạo theo đơn vị kilômét. Hỏi khi sao chổi nằm trên đường vuông góc với trục đối xứng của quỹ đạo tại tâm Mặt Trời, thì khoảng cách từ sao chổi đến tâm Mặt Trời là bao nhiêu kilômét?
Lời giải:
Chọn hệ trục toạ độ sao cho tâm Mặt Trời trùng với tiêu điểm của parabol, đơn vị trên các trục là kilômét.
Gọi phương trình chính tắc của quỹ đạo parabol là y2 = 2px (p > 0).
Giả sử sao chổi có toạ độ là M(x; y).
Khi đó khoảng cách từ sao chổi đến tâm Mặt Trời là MF = x +
Do đó khoảng cách ngắn nhất từ sao chổi đến tâm Mặt Trời là
⇒ = 106 ⇒ p = 212.
Vậy phương trình chính tắc của quỹ đạo parabol là y2 = 424x.
Khi sao chổi nằm trên đường vuông góc với trục đối xứng của quỹ đạo tại tâm Mặt Trời, tức điểm M nằm trên đường thẳng thì M có hoành độ là
⇒ Khoảng cách từ sao chổi đến tâm Mặt Trời là:
MF = x + = 106 + 106 = 212 (km).
Xem thêm các bài giải Chuyên đề Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 54 Chuyên đề Toán 10: Cho parabol có phương trình chính tắc y2 = 2px (H.3.18)....
HĐ2 trang 55 Chuyên đề Toán 10: Cho parabol có phương trình chính tắc y2 = 2px (H.3. 19)....