Bài 9.33 trang 98 Toán 11 Tập 2 Kết nối tri thức | Giải bài tập Toán lớp 11

327

Với giải Bài 9.33 trang 98 Toán 11 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 9 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài tập cuối chương 9

Bài 9.33 trang 98 Toán 11 Tập 2: Vị trí của một vật chuyển động thẳng được cho bởi phương trình: s = f(t) = t3 – 6t2 + 9t, trong đó t tính bằng giây và s tính bằng mét.

a) Tính vận tốc của vật tại các thời điểm t = 2 giây và t = 4 giây.

b) Tại những thời điểm nào vật đứng yên?

c) Tìm gia tốc của vật tại thời điểm t = 4 giây.

d) Tính tổng quãng đường vật đi được trong 5 giây đầu tiên.

e) Trong 5 giây đầu tiên, khi nào vật tăng tốc, khi nào vật giảm tốc?

Lời giải:

a) Ta có: v(t) = s'(t) = 3t2 – 12t + 9.

Vận tốc của vật tại thời điểm t = 2 giây là v(2) = 3 . 22 – 12 . 2 + 9 = –3 (m/s).

Vận tốc của vật tại thời điểm t = 4 giây là v(4) = 3 . 42 – 12 . 4 + 9 = 9 (m/s).

b) Khi vật đứng yên ta có: v(t) = 0 ⇔ 3t2 – 12t + 9 = 0 ⇔ t = 1 hoặc t = 3.

Vậy tại thời điểm 1 giây hoặc 3 giây thì vật đứng yên.

c) Ta có: a(t) = s''(t) = 6t – 12.

Gia tốc của vật tại thời điểm t = 4 giây là a(4) = 6 . 4 – 12 = 12 (m/s2).

d) Ta có khi t = 1 hoặc t = 3 thì vật đứng yên.

Do đó, ta cần tính riêng rẽ quãng đường vật đi được trong từng khoảng thời gian [0; 1], [1; 3], [3; 5].

Ta có: f(0) = 03 – 6 . 02 + 9 . 0 = 0; f(1) = 13 – 6 . 12 + 9 . 1 = 4;

f(3) = 33 – 6 . 32 + 9 . 3 = 0; f(5) = 53 – 6 . 52 + 9 . 5 = 20.

Từ thời điểm t = 0 giây đến thời điểm t = 1 giây, vật đi được quãng đường là:

|f(1) – f(0)| = |4 – 0| = 4 (m).

Từ thời điểm t = 1 giây đến thời điểm t = 3 giây, vật đi được quãng đường là:

|f(3) – f(1)| = |0 – 4| = 4 (m).

Từ thời điểm t = 3 giây đến thời điểm t = 5 giây, vật đi được quãng đường là:

|f(5) – f(3)| = |20 – 0| = 20 (m).

Tổng quãng đường vật đi được trong 5 giây đầu tiên là 4 + 4 + 20 = 28 (m).

e)

Xét a(t) = 0, tức là 6t – 12 = 0 ⇔ t = 2.

Với t ∈ [0; 2) thì gia tốc âm, tức là vật giảm tốc.

Với t ∈ (2; 5] thì gia tốc dương, tức là vật tăng tốc.

Đánh giá

0

0 đánh giá