Giải SBT Toán 11 trang 109 Tập 1 Cánh diều

179

Với lời giải SBT Toán 11 trang 109 Tập 1 chi tiết trong Bài 4: Hai mặt phẳng song song sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 4: Hai mặt phẳng song song

Bài 34 trang 109 SBT Toán 11Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD, N là điểm thuộc đoạn thẳng AC sao cho AN = AC, P là điểm thuộc đoạn thẳng CD sao cho DP = DC. Chứng minh rằng (MNP) // (SBC).

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD, N là điểm thuộc đoạn thẳng AC sao cho AN =  AC, P là điểm thuộc đoạn thẳng CD sao cho DP =  DC. Chứng minh rằng (MNP) // (SBC).  (ảnh 1)

Gọi E là trung điểm của AD và I là giao điểm của NP và EC.

Ta có ANAC=DPDC=13 nên NP // AD.

Do AD // BC (ABCD là hình thang có AD là đáy) nên NP // BC.

Mà BC ⊂ (SBC). Suy ra NP // (SBC). (1)

Vì NP // AD nên ta có EIEC=ANAC=13.

Do M là trọng tâm của tam giác SAD và E trung điểm của đoạn AD nên M ∈ SE và EMES=13.

Như vậy EIEC=EMES nên MI // SC.

Mà SC ⊂ (SBC). Suy ra MI // (SBC). (2)

Lại có MI và NP là hai đường thẳng cắt nhau tại I trong mặt phẳng (MNP). (3)

Từ (1), (2) và (3) suy ra (MNP) // (SBC).

Bài 35 trang 109 SBT Toán 11Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên các đường chéo AC, BF lần lượt lấy các điểm M, N sao cho AMAC=BNBF. Qua M vẽ đường thẳng song song với AB cắt AD tại M', qua N vẽ đường thẳng song song với AB cắt AF tại N'.

a) Chứng minh rằng (MNN') // (CDE).

b) Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng EF tại I. Tính FIFE, biết AMAC=13.

Lời giải:

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên các đường chéo AC, BF lần lượt lấy các điểm M, N sao cho  . Qua M vẽ đường thẳng song song với AB cắt AD tại M', qua N vẽ đường thẳng song song với AB cắt AF tại N'.  a) Chứng minh rằng (MNN') // (CDE).  b) Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng EF tại I. Tính  , biết  . (ảnh 1)

a) Ta có MM' // AB và NN' // AB (theo đề bài) nên MM' // NN'.

Suy ra M, M', N', N cùng thuộc một mặt phẳng. (1)

Ta có CD // AB (do ABCD là hình bình hành) và EF // AB (do ABEF là hình bình hành) nên CD // EF, suy ra C, D, F, E cùng thuộc một mặt phẳng.

Do AB // CD nên MM' // CD, mà CD ⊂ (CDE), suy ra MM' // (CDE). (2)

Theo định lí Thalés trong tam giác ACD, ta có AMAC=AM'AD (MM' // CD).

Tương tự, trong tam giác AFB có BNBF=AN'AF (NN' // AB).

Mà AMAC=BNBF (theo đề bài). Do đó, AM'AD=AN'AF, từ đó suy ra M'N' // DF.

Mà DF ⊂ (CDE) (do C, D, F, E cùng thuộc một mặt phẳng) nên M'N' // (CDE). (3)

Từ (2) và (3) suy ra (MM'N') // (CDE). (4)

Từ (1) và (4) suy ra (MNN') // (CDE).

b) Ta có AF // BE và AD // BC, từ đó suy ra (ADF) // (BCE).

Khi đó đường thẳng AC cắt ba mặt phẳng song song (ADF), (P), (BCE) lần lượt tại A, M, C; đường thẳng FE cũng cắt ba mặt phẳng trên theo thứ tự tại F, I, E.

Áp dụng định lí Thalés trong không gian, ta có: AMFI=MCIE=ACFE.

Suy ra FIFE=AMAC. Mà AMAC=13 nên FIFE=13.

Đánh giá

0

0 đánh giá