Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD

5.2 K

Với giải Bài 34 trang 109 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 4: Hai mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 4: Hai mặt phẳng song song

Bài 34 trang 109 SBT Toán 11Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD, N là điểm thuộc đoạn thẳng AC sao cho AN = AC, P là điểm thuộc đoạn thẳng CD sao cho DP = DC. Chứng minh rằng (MNP) // (SBC).

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD, N là điểm thuộc đoạn thẳng AC sao cho AN =  AC, P là điểm thuộc đoạn thẳng CD sao cho DP =  DC. Chứng minh rằng (MNP) // (SBC).  (ảnh 1)

Gọi E là trung điểm của AD và I là giao điểm của NP và EC.

Ta có ANAC=DPDC=13 nên NP // AD.

Do AD // BC (ABCD là hình thang có AD là đáy) nên NP // BC.

Mà BC ⊂ (SBC). Suy ra NP // (SBC). (1)

Vì NP // AD nên ta có EIEC=ANAC=13.

Do M là trọng tâm của tam giác SAD và E trung điểm của đoạn AD nên M ∈ SE và EMES=13.

Như vậy EIEC=EMES nên MI // SC.

Mà SC ⊂ (SBC). Suy ra MI // (SBC). (2)

Lại có MI và NP là hai đường thẳng cắt nhau tại I trong mặt phẳng (MNP). (3)

Từ (1), (2) và (3) suy ra (MNP) // (SBC).

Đánh giá

0

0 đánh giá