Giải SBT Toán 11 trang 7 Tập 2 Kết nối tri thức

213

Với lời giải SBT Toán 11 trang 7 Tập 2 chi tiết trong Bài 18: Lũy thừa với số mũ thực sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 18: Lũy thừa với số mũ thực

Bài 6.6 trang 7 SBT Toán 11 Tập 2: Cho a và b là số dương, a ≠ b. Rút gọn biểu thức sau:

A=aba34+a12b14a12b12a14+b14:a14b14 .

Lời giải:

Đặt B=aba34+a12b14a12b12a14+b14=aba12a14+b14a12b12a14+b14

=aba12a12b12a12a14+b14=aba+a12b12a12a14+b14=b+a12b12a12a14+b14=b12a12b12a12a14+b14

=b12a14b14a14+b14a12a14+b14=ba12a14b14

Do đó

A=aba34+a12b14a12b12a14+b14:a14b14=ba12a14b14:a14b14

=ba12a14b141a14b14=ba12.

Bài 6.7 trang 7 SBT Toán 11 Tập 2: Giả sử một lọ nuôi cấy có 100 con vi khuẩn lúc ban đầu và số lượng vi khuẩn tăng gấp đôi sau mỗi 2 giờ. Khi đó số vi khuẩn N sau t (giờ) sẽ là N=1002t2 (con). Hỏi sau 312 giờ sẽ có bao nhiêu con vi khuẩn?

Lời giải:

Đổi 312=72 (giờ)

Sau 72 giờ sẽ có số con vi khuẩn là: 1002722=100274336 (con).

Vậy sau 312 giờ sẽ có 336 con vi khuẩn.

Bài 6.8 trang 7 SBT Toán 11 Tập 2: Chu kì dao động (tính bằng giây) của một con lắc có chiều dài L (tính bằng mét) được cho bởi T=2πL9,8 . Nếu một con lắc có chiều dài 19,6 m, hãy tính chu kì T của con lắc này (làm tròn kết quả đến chữ số thập phân thứ nhất).

Lời giải:

Vì một con lắc có chiều dài 19,6 m nên L = 19,6

Chu kì của con lắc là: T=2π19,69,88,9 (giây).

Vậy nếu một con lắc có chiều dài 19,6 m thì chu kì T khoảng 8,9 giây.

Bài 6.9 trang 7 SBT Toán 11 Tập 2: Định luật thứ ba của Kepler nói rằng bình phương của chu kì quỹ đạo p (tính bằng năm Trái Đất) của một hành tinh chuyển động xung quanh Mặt Trời (theo quỹ đạo là một đường elip với Mặt Trời nằm ở một tiêu điểm) bằng lập phương của bán trục lớn d (tính bằng đơn vị thiên văn AU).

a) Tính p theo d.

b) Nếu Sao Thổ có chu kì quỹ đạo là 29,46 năm Trái Đất, hãy tính bán trục lớn quỹ đạo của Sao Thổ đến Mặt Trời (kết quả tính theo đơn vị thiên văn và làm tròn đến hàng phần trăm).

Lời giải:

a) Theo định luật Kepler ta có : p2 = d3 hay p=d3 .

b) Vì Sao Thổ có chu kì quỹ đạo là 29,46 năm Trái Đất nên p = 29,46.

Khi đó, ta có:

29,46=d329,462=d3d=29,4623d9,54

Vậy bán trục lớn quỹ đạo của Sao Thổ đến Mặt Trời khoảng 9,54 AU.

Bài 6.10 trang 7 SBT Toán 11 Tập 2: Khoảng cách từ một hành tinh đến Mặt Trời có thể xấp xỉ bằng một hàm số của độ dài năm của hành tinh đó. Công thức của hàm số đó là d=6t23 , trong đó d là khoảng cách từ hành tinh đó đến Mặt Trời (tính bằng triệu dặm) và t là độ dài năm của hành tinh đó (tính bằng số ngày Trái Đất).

(Theo Algebra 2, NXB MacGraw-Hill, 2008).

a) Nếu độ dài của một năm trên Sao Hỏa là 687 ngày Trái Đất thì khoảng cách từ Sao Hỏa đến Mặt Trời là bao nhiêu?

b) Tính khoảng cách từ Trái Đất đến Mặt Trời (coi một năm trên Trái Đất có 365 ngày).

(Kết quả của câu a và câu b tính theo đơn vị triệu dặm và làm tròn đến chữ số thập phân thứ hai).

Lời giải:

a) Vì độ dài của một năm trên Sao Hỏa là 687 ngày Trái Đất nên t = 687

Khi đó, khoảng cách từ Sao Hỏa đến Mặt Trời là: d=668723141,48 (triệu dặm).

Vậy khoảng cách từ Sao Hỏa đến Mặt Trời khoảng 141,48 (triệu dặm).

b) Vì một năm trên Trái Đất có 365 ngày nên t = 365

Khoảng cách từ Trái Đất đến Mặt Trời là: d=63652392,81 (triệu dặm).

Vậy khoảng cách từ Trái Đất đến Mặt Trời khoảng 92,81 (triệu dặm).

Đánh giá

0

0 đánh giá