Giải Toán 8 trang 111 Tập 1 Cánh diều

600

Với lời giải Toán 8 trang 111 Tập 1 chi tiết Bài 5: Hình chữ nhật sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 5: Hình chữ nhật

Luyện tập 2 trang 111 Toán 8 Tập 1: Cho hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O thoả mãn OAB^=ODC^. Chứng minh ABCD là hình chữ nhật.

Lời giải:

Luyện tập 2 trang 111 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Do ABCD là hình bình hành nên AB // CD và OA = OC; OB = OD.

Từ AB // CD suy ra CAB^=ACD^ hay OAB^=OCD^.

 OAB^=ODC^ (giả thiết) nên ODC^=OCD^ (cùng bằng OAB^)

Do đó tam giác ODC có ODC^=OCD^ là tam giác cân tại O

Suy ra OD = OC.

Mà OA = OC; OB = OD (chứng minh trên)

Do đó OA = OB = OC = OD, nên AC = BD

Hình bình hành ABCD có hai đường chéo AC = BD nên là hình chữ nhật.

Bài tập

Bài 1 trang 111 Toán 8 Tập 1: Cho hình thang cân ABCD có AB // CD, A^=90°. Chứng minh ABCD là hình chữ nhật.

Lời giải:

Bài 1 trang 111 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Do ABCD là hình thang cân có AB // CD nên B^=A^=90°,C^=D^.

Vì AB // CD nên A^+D^=180°

Suy ra D^=180°A^=180°90°=90°

Do đó hình thang cân ABCD có A^=B^=C^=D^=90° nên là hình chữ nhật.

Bài 2 trang 111 Toán 8 Tập 1: Cho tam giác ABC vuông tại A có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D cho MD = MA. Chứng minh tứ giác ABDC là sao hình chữ nhật và AM=12BC.

Lời giải:

Bài 2 trang 111 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Do MD = MA (giả thiết) nên M là trung điểm của AD.

Xét tứ giác ABDC có hai đường chéo AD và BC cắt nhau tại trung điểm M của mỗi đường

Do đó ABDC là hình bình hành.

Lại có BAC^=90°.

Do đó hình bình hành ABDC là hình chữ nhật.

Suy ra AD = BC.

 AM=12AD (do M là trung điểm của AD) nên AM=12BC.

Bài 3 trang 111 Toán 8 Tập 1: Cho hình chữ nhật ABCD có điểm E nằm trên cạnh CD sao cho AEB^=78°, EBC^=39°. Tính số đo của BEC^  EAB^.

Lời giải:

Bài 3 trang 111 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Xét tam giác BEC vuông tại C có:

BEC^+EBC^=90° (trong tam giác vuông, hai góc nhọn bằng 90°)

Suy ra BEC^=90°39°=51°.

Do ABCD là hình chữ nhật nên AB // CD

Suy ra ABE^=BEC^=51°(so le trong).

Xét tam giác ABE có: EAB^+ABE^+AEB^=180° (tổng ba góc của một tam giác)

Suy ra EAB^=180°ABE^AEB^=180°51°78°=51°.

Bài 4 trang 111 Toán 8 Tập 1: Một khu vườn có dạng tứ giác ABCD với các góc A, B, D là góc vuông, AB = 400 m, AD = 300 m. Người ta đã làm một cái hồ nước có dạng hình tròn, khi đó vị trí C không còn nằm trong khu vườn nữa (Hình 52). Tính khoảng cách từ vị trí C đến mỗi vị trí A, B, D.

Bài 4 trang 111 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Lời giải:

Xét tứ giác ABCD có A^=B^=D^=90° .

Do đó ABCD là hình chữ nhật.

Khi đó CB = AD = 300 m, CD = AB = 400 m.

Xét ΔABC vuông tại B, theo định lí Pythagore ta có:

AC2 = AB2 + BC2

Suy ra AC=AB2+BC2=4002+3002=500  m.

Vậy khoảng cách từ vị trí C đến mỗi vị trí A, B, D lần lượt là 500 m, 300 m và 400 m.

Bài 5 trang 111 Toán 8 Tập 1: Bạn Linh có một mảnh giấy dạng hình tròn. Bạn Linh đố bạn Bình: Làm thế nào có thể chọn ra 4 vị trí trên đường tròn đó để chúng là 4 đỉnh của một hình chữ nhật?

Bạn Bình đã làm như sau:

Bước 1. Gấp mảnh giấy sao cho hai nửa hình tròn trùng khít nhau. Nét gấp thẳng tạo thành đường kính của hình tròn. Ta đánh dấu hai đầu mút của đường kính đó là hai điểm A, C.

Bước 2. Sau đó lại gấp tương tự mảnh giấy đó nhưng theo đường kính mới và đánh dấu hai đầu mút của đường kính mới là hai điểm B, D. Khi đó tứ giác ABCD là hình chữ nhật (Hình 53).

Bài 5 trang 111 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Em hãy giải thích cách làm của bạn Bình.

Lời giải:

Bài 5 trang 111 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Gọi O là giao điểm của hai đường kính AC và BD.

Do đó OA = OB = OC = OD (vì cùng bằng bán kính của hình tròn)

Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm O của mỗi đường nên là hình bình hành.

Mặt khác AC và BD là đường kính của hình tròn nên AC = BD

Do đó hình bình hành ABCD có hai đường chéo AC, BD bằng nhau nên là hình chữ nhật.

Đánh giá

0

0 đánh giá