Giải SGK Toán 8 Bài 2 (Chân trời sáng tạo): Giải bài toán bằng cách lập phương trình bậc nhất

3.2 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 8 Bài 2: Giải bài toán bằng cách lập phương trình bậc nhất chi tiết sách Toán 8 Tập 2 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 2: Giải bài toán bằng cách lập phương trình bậc nhất

Giải Toán 8 trang 37

Khởi động trang 37 Toán 8 Tập 2: Sau khi giảm giá 15% thì đôi giày thể thao có giá là 1 275 000 đồng. Hỏi lúc chưa giảm giá thì đôi giày có giá là bao nhiêu?

Khởi động trang 37 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Giảm giá 15% suy ra sau khi giảm giá, đôi giày có giá bằng 85% giá gốc ban đầu.

Giá đôi giày lúc chưa giảm giá là:

(1 275 000 : 85%) × 100% = 1500 000 (đồng)

Vậy giá đôi giày khi chưa giảm giá là: 1 500 000 đồng.

1. Biểu diễn một đại lượng bằng biểu thức chứa ẩn

Khám phá 1 trang 37 Toán 8 Tập 2: Một mảnh vườn hình chữ nhật có chiều rộng là x (m), chiều dài hơn chiều rộng 20 m.

Hãy viết biểu thức với biến x biểu thị:

a) Chiều dài của hình chữ nhật;

b) Chu vi của hình chữ nhật;

c) Diện tích của hình chữ nhật.

Lời giải:

a) Chiều dài của hình chữ nhật : x + 20 (m)

b) Chu vi của hình chữ nhật : (x + x + 20).2 = 4x + 40 (m)

c) Diện tích của hình chữ nhật : x(x + 20) = x2 + 20x (m2)

Thực hành 1 trang 37 Toán 8 Tập 2: Tiền lương cơ bản của anh Minh mỗi tháng là x (triệu đồng). Tiền phụ cấp mỗi tháng là 3 500 000 đồng.

a) Viết biểu thức biểu thị tiền lương mỗi tháng của anh Minh. Biết tiền lương mỗi tháng bằng tổng tiền lương cơ bản và tiền phụ cấp.

b) Tháng Tết, anh Minh được thưởng 1 tháng lương cùng với 60% tiền phụ cấp. Viết biểu thức chỉ số tiền anh Minh được nhận ở tháng Tết.

Lời giải:

a) Biểu thức biểu thị tiền lương mỗi tháng của anh Minh: x + 3 500 000 (đồng)

b) Biểu thức chỉ số tiền anh Minh được nhận ở tháng Tết :

(x + 3 500 000) + (x + 0,8.3 500 000) = 2x + 6 300 000 (đồng)

2. Giải bài toán bằng cách lập phương trình bậc nhất

Giải Toán 8 trang 38

Khám phá 2 trang 38 Toán 8 Tập 2: Thay dấu Khám phá 2 trang 38 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8 bằng các dữ liệu thích hợp để hoàn thành lời giải bài toán.

Một người đi xe gắn máy từ A đến B với tốc độ 40 km/h. Lúc về người đó đi với tốc độ 50 km/h nên thời gian về ít hơn thời gian đi là 30 phút. Tìm chiều dài quãng đường AB.

Gọi chiều dài quãng đường AB là x (km). Điều kiện x >   ?   .

Thời gian đi là:  x40 giờ.

Thời gian về là:   ?   .

Ta có: 30 phút = 12  giờ.

Vì thời gian về ít hơn thời gian đi là 12  giờ nên ta có phương trình:

x40  ?  =12

Giải phương trình, ta được x =   ?     thỏa mãn điều kiện x >   ?   .

Vậy chiều dài của quãng đường AB là   ?   >.

Lời giải:

Gọi chiều dài quãng đường AB là x (km). Điều kiện x > 0.

Thời gian đi là: x40  giờ

Thời gian về là: x50  giờ

Ta có: 30 phút = 12  giờ

Vì thời gian về ít hơn thời gian đi là 12  giờ nên ta có phương trình:

x40x50=12

Giải phương trình, ta được x = 100 thỏa mãn điều kiện x > 0.

Vậy chiều dài của quãng đường AB là 100 km.

Giải Toán 8 trang 39

Thực hành 2 trang 39 Toán 8 Tập 2: Một người mua 36 bông hoa hồng và hoa cẩm chướng hết tất cả 136 800 đồng. Giá mỗi bông hoa hồng là 3 000 đồng, giá mỗi bông hoa cẩm chướng là 4 800 đồng. Tính số bông hoa mỗi loại.

Thực hành 2 trang 39 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Gọi số bông hoa hồng là a (a  ℕ*)

Số bông hoa cẩm chướng là: 36 – a (bông)

Số tiền mua hoa hồng là: 3 000a (đồng)

Số tiền mua hoa cẩm chướng là: 4 800(36 – a) (đồng)

Vì tổng số tiền mua hoa hết 136 800 đồng nên ta có phương trình:

3 000a + 4 800(36 – a) = 136 800

 3 000a + 172 800 – 4 800a = 136 800

–1 800a = –36 000

a = 20 (thỏa mãn)

Vậy số bông hoa hồng là 20, số bông hoa cẩm chướng là 36 – 20 = 16.

Vận dụng trang 39 Toán 8 Tập 2: Giải bài toán đã cho trong Hoạt động khởi động (trang 37).

Lời giải:

Gọi giá gốc của đôi giày là a (a > 1 275 000).

Giá của của đôi giày sau khi giảm giá 15% là: 0,85a

Vì sau khi giảm giá đôi giày có giá 1 275 000 đồng nên ta có phương trình

0,85a = 1 275 000

a = 1 275 000 : 0,85

a = 1 500 000 (thỏa mãn)

Vậy giá của đôi giày khi chưa giảm giá là 1 500 000 đồng.

Bài tập

Bài 1 trang 39 Toán 8 Tập 2: Một nhân viên giao hàng trong hai ngày đã giao được 95 đơn hàng. Biết số đơn hàng ngày thứ hai giao được nhiều hơn ngày thứ nhất là 15 đơn. Tính số đơn hàng nhân viên đó giao được trong ngày thứ nhất.

Lời giải:

Gọi số đơn hàng giao trong ngày thứ nhất là a (0 < a < 95)

Số đơn giao trong ngày thứ hai là 95 – a (đơn)

Số đơn giao trong ngày thứ hai nhiều hơn ngày thứ nhất là 15 đơn nên ta có phương trình:

(95  a)  a = 15

2a = 15  95

2a = 80

A = 40 (TMĐK)

Vậy số đơn giao trong ngày thứ nhất là 40 đơn.

Bài 2 trang 39 Toán 8 Tập 2: Anh Bình tiêu hao 14 calo cho mỗi phút bơi và 10 calo cho mỗi phút chạy bộ. Trong 40 phút với hai hoạt động trên, anh Bình đã tiêu hao 500 calo. Tính thời gian chạy bộ của anh Bình.

Lời giải:

Gọi thời gian bơi là x (phút) (0 < x < 40)

Thời gian chạy bộ là 40 – x (phút)

Số calo tiêu tốn cho bơi và chạy bộ lần lượt là:

14x; 10(40 – x) = 400 – 10x (calo)

Tổng số calo tiêu tốn là 500 nên ta có:

14x + 400 – 10x = 500

4x + 400 = 500

4x = 100

x = 25 (thỏa mãn)

Suy ra thời gian bơi là: 25 phút

Thời gian chạy bộ là: 40 – 25 = 15 (phút)

Vậy thời gian chạy bộ của bạn Bình là 15 phút.

Giải Toán 8 trang 40

Bài 3 trang 40 Toán 8 Tập 2: Một cửa hàng ngày thứ nhất bán được nhiều hơn ngày thứ hai 560 kg gạo. Tính số gạo cửa hàng bán được trong ngày thứ nhất, biết rằng nếu ngày thứ nhất bán được thêm 60 kg gạo thì sẽ gấp 1,5 lần ngày thứ hai.

Lời giải:

Gọi số gạo bán được trong ngày thứ nhất là a kg (a > 560)

Số gạo bán được trong ngày thứ hai: a – 560

Nếu ngày thứ nhất bán được thêm 60 kg gạo thì sẽ gấp 1,5 lần ngày thứ hai nên ta có phương trình:

a + 60 = 1,5(a − 560)

a + 60 = 1,.5a – 840

–0,5a = –900

a = (–900) : (–0,5)

a = 1 800 (thỏa mãn)

Vậy ngày thứ nhất bán được 1 800 kg gạo.

Bài 4 trang 40 Toán 8 Tập 2: Một xe tải đi từ A đến B với tốc độ 50 km/h. Khi từ B quay về A xe chạy với tốc độ 40 km/h. Thời gian cả đi lẫn về mất 5 giờ 24 phút không kể thời gian nghỉ. Tính chiều dài quãng đường AB.

Lời giải:

Ta có: 5 giờ 24 phút = 275  giờ

Gọi độ dài quãng đường AB là x (km) (x > 0)

Thời gian người đó đi từ A đến B là  x50 giờ.

Thời gian người đó đi từ B về A là x40  giờ

Thời gian cả đi và về là 275 giờ.

x50+x40=275

4x + 5x = 1080

9x = 1080

x = 120 km (thỏa mãn)

Vậy quãng đường AB dài 120 km.

Bài 5 trang 40 Toán 8 Tập 2: Bác Năm gửi tiết kiệm một số tiền tại một ngân hàng theo thể thức kì hạn một năm với lãi suất 6,2%/năm, tiền lãi sau mỗi năm gửi tiết kiệm sẽ được nhập vào tiền vốn để tính lãi cho năm tiếp theo. Sau hai năm gửi bác Năm rút hết tiền về và nhận được cả vốn lẫn lãi là 225 568 800 đồng. Hỏi số tiền ban đầu bác Năm gửi tiết kiệm là bao nhiêu?

Lời giải:

Gọi a (đồng)  số tiền ban đầu bác Năm gửi (0 < a < 225 568 800)

Tổng cả vốn lẫn lãi sau 1 năm: 1,062a (đồng)

Tổng cả vốn lẫn lãi sau 2 năm: 1,0622a (đồng)

Sau hai năm gửi bác Năm rút hết tiền về và nhận được cả vốn lẫn lãi là 225 568 800 đồng nên ta có phương trình:

1,0622a = 22 446 800

a = 200 000 000 (thỏa mãn)

Số tiền ban đầu bác Năm gửi tiết kiệm là 200 000 000 đồng.

Bài 6 trang 40 Toán 8 Tập 2: Tổng số học sinh khối 8 và khối 9 của một trường là 580 em, trong đó có 256 em là học sinh giỏi. Tính số học sinh mỗi khối , biết rằng số học sinh giỏi khối 8 chiếm tỉ lệ 40% số học sinh khối 8, số học sinh giỏi khối 9 chiếm tỉ lệ 48% số học sinh khối 9.

Lời giải:

Gọi số học sinh khối 8 là a em (0 < a < 580)

Số học sinh khối 9 là 580 – a (em)

Số học sinh giỏi khối 8 là 0,4a (em)

Số hoc sinh giỏi khối 9 là 0,48(580 – a)

Tổng số học sinh giỏi là 256 em nên ta có phương trình:

0,4a + 0,48(580 – a) = 256

0,4a + 278,4 – 0,48a = 256

–0,08a = –22,44

a = 280 (thỏa mãn)

Vậy số học sinh khối 8 là 280 em, số học sinh khối 9 là 580 – 280 = 300 (em).

Bài 7 trang 40 Toán 8 Tập 2: Một lọ dung dịch chứa 12% muối. Nếu pha thêm 350g nước vào lọ thì được một dung dịch 5% muối. Tính khối lượng dung dịch trong lọ lúc đầu.

Lời giải:

Gọi x (g) là lượng dung dịch ban đầu (x > 0).

Lượng muối trong dung dịch ban đầu là 0,12x (gam)

Pha thêm 350g nước, ta có x + 350 (gam)

Tỉ lệ phần trăm muối trong dung dịch mới bằng 0,05(x + 350)

Vì lượng muối không thay đổi nên ta có phương trình là:

0,12x = 0,05(x + 350)

0,12x = 0,05x + 17,5

0,07x = 17,5

x = 250 (thỏa mãn)

Vậy khối lượng dung dịch trong lọ lúc đầu là 250g.

Bài 8 trang 40 Toán 8 Tập 2: Để khuyến khích tiết kiệm điện, giá bán lẻ điện sinh hoạt năm 2022 được tính lũy tiến, nghĩa là sử dụng càng nhiều điện thì giá mỗi kWh càng tăng theo các mức như sau:

Mức 1: Tính cho 50 kWh đầu tiên.

Mức 2: Tính cho số kWh từ 51 đến 100 kWh, mỗi kWh ở mức 2 cao hơn 56 đồng so với mức 1.

Mức 3: Tính cho số kWh từ 101 đến 200 kWh, mỗi kWh ở mức 3 cao hơn 280 đồng so với mức 2.

Mức 4: Tính cho số kWh từ 201 đến 300 kWh, mỗi kWh ở mức 4 cao hơn 522 đồng so với ở mức 3.

...

Ngoài ra, người sử dụng điện còn phải trả thêm 10% thuế giá trị gia tăng.

Tháng vừa rồi nhà bạn Minh đã sử dụng hết 185 kWh và phải trả 375 969 đồng. Hỏi mỗi kWh ở mức 3 giá bao nhiêu?

Lời giải:

Gọi x (đồng) là giá mỗi số điện ở mức thứ nhất (x > 0).

Khi đó, ta có:

Giá mỗi số điện ở mức 2 là: x + 56 (đồng)

Giá mỗi số điện ở mức 3 là: x + 56 + 280 = x + 336 (đồng)

Giá mỗi số điện ở mức 4 là : x + 336 + 522 = x + 858 (đồng)

Nhà Minh dùng hết 185 số điện = 50 + 50 + 85.

Như vậy nhà Minh phải đóng cho 50 số điện ở mức 1, 50 số điện ở mức 2 và 85 số điện ở mức 3.

Giá tiền 50 số điện mức đầu tiên là: 50x (đồng)

Giá tiền 50 số điện mức thứ hai là: 50(x + 56) (đồng)

Giá tiền 85 số điện còn lại mức thứ ba là: 85(x + 336) (đồng).

Khi đó, số tiền điện (chưa tính VAT) của nhà Cường bằng:

50x + 50(x + 56) + 85(x + 336)

= 50x + 50x + 2 800 + 85x + 28 560

= 185x + 31 360

Thuế VAT nhà Cường phải trả là: 0,1(185x + 31 360)

Tổng số tiền điện nhà Cường phải đóng (tiền gốc + thuế) bằng:

1,1(185x + 31 360)

Thực tế nhà Cường hết 95 700 đồng nên ta có phương trình:

1,1(185x + 31 360) = 375 969

 203,5x + 34 496 = 375 969

 203,5x = 341 473

 x = 1678 (đồng) (thỏa mãn điều kiện).

Vậy mỗi số điện ở mức giá thứ 3 là 1678 + 336 = 2014 (đồng).

Lý thuyết Giải bài toán bằng cách lập phương trình bậc nhất

Các bước giải bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình.

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

- Biểu diễn các đại lượng chưa biết theo ẩn và theo các đại lượng đã biết.

- Lập phương trình biểu diễn mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình.

Bước 3. Trả lời.

- Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không.

- Kết luận

Đánh giá

0

0 đánh giá