Giải Toán 11 trang 17 Tập 1 Cánh diều

141

Với lời giải Toán 11 trang 17 Tập 1 chi tiết trong Bài 2: Các phép biến đổi lượng giác sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 2: Các phép biến đổi lượng giác

Hoạt động 2 trang 17 Toán 11 Tập 1: a) Tính cos(a + b) bằng cách biến đổi cos(a + b) = sinπ2a+b=sinπ2ab và sử dụng công thức cộng đối với sin.

b) Tính cos(a ‒ b) bằng cách biến đổi cos(a – b) = cos[a + (‒b)] và sử dụng công thức cos(a + b) có được ở câu a.

Lời giải:

a) Ta có: cos(a + b) = sinπ2a+b=sinπ2ab

= sinπ2a.cosb - cosπ2a.sinb

= cosa.cosb - sina.sinb

Vậy cos(a + b) = cosa cosb – sina sinb.

b) Ta có: cos(a – b) = cos[a + (‒b)]

= cosa cos(‒b) – sina sin(‒b)

= cosa cosb ‒ sina (‒sinb)

= cosa cosb + sina sinb.

Vậy cos(a – b) = cosa cosb + sina sinb.

Luyện tập 2 trang 17 Toán 11 Tập 1: Tính cos15°.

Lời giải:

Áp dụng công thức cộng, ta có:

cos15° = cos(45° ‒ 30°)

= cos45°.cos30° + sin45°.sin30°

= 22.32+22.12=6+24.

Hoạt động 3 trang 17 Toán 11 Tập 1: a) Sử dụng công thức cộng đối với sin và côsin, hãy tính tan(a + b) theo tana và tanb khi các biểu thức đều có nghĩa.

b) Khi các biểu thức đều có nghĩa, hãy tính tan (a – b) bằng cách biến đổi tan(a-b) = tan[a+(-b)] và sử dụng công thức tan(a + b) có được ở câu a.

Lời giải:

a) Khi các biểu thức đều có nghĩa, ta có:

tan(a + b) = sina+bcosa+b=sinacosb+cosasinbcosacosbsinasinb

Hoạt động 3 trang 17 Toán 11 Tập 1 | Cánh diều Giải Toán 11 (chia cả tử và mẫu cho cosacosb)

Hoạt động 3 trang 17 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Vậy tan(a+b) = tana+tanb1tanatanb.

b) Khi các biểu thức đều có nghĩa, ta có:

tan(a-b) = tan[a+(-b)]

=tana+tanb1tanatanb

=tanatanb1+tanatanb .

Vậy tan(a-b) = tanab=tanatanb1+tanatanb.

Luyện tập 3 trang 17 Toán 11 Tập 1: Tính tan165°.

Lời giải:

Áp dụng công thức cộng, ta có:

tan165° = tan(120° + 45°)

Luyện tập 3 trang 17 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Vậy tan165o = -2+3.

Đánh giá

0

0 đánh giá