Giải Toán 11 trang 102 Tập 1 Chân trời sáng tạo

160

Với lời giải Toán 11 trang 102 Tập 1 chi tiết trong Bài 2: Hai đường thẳng song song sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 2: Hai đường thẳng song song

Vận dụng 1 trang 102 Toán 11 Tập 1: Hãy chỉ ra các ví dụ về hai đường thẳng song song, cắt nhau và chéo nhau trong hình cầu sắt ở Hình 6.

Vận dụng 1 trang 102 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Vận dụng 1 trang 102 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

+) Hai đường thẳng a và b nằm trong mặt phẳng phía trên của cầu sắt và song song với nhau.

+) Hai đường thẳng c và d nằm trong mặt phẳng phía trên của cầu sắt và cắt nhau tại điểm A.

+) Hai đường thẳng e và f không cùng nằm trong một mặt phẳng nên e và f là hai đường thẳng chéo nhau.

2. Tính chất cơ bản về hai đường thẳng song song

Hoạt động khám phá 2 trang 102 Toán 11 Tập 1: a) Trong không gian, cho điểm M ở ngoài đường thẳng d. Đặt (P) = mp(M, d). Trong (P), qua M vẽ đường thẳng d’ song song với d, đặt (Q) = mp(d, d’). Có thể khẳng định hai mặt phẳng (P) và (Q) trùng nhau không?

Hoạt động khám phá 2 trang 102 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Cho ba mặt phẳng (P), (Q), (R) cắt nhau theo ba giao tuyến a, b, c phân biệt với a = (P) ∩ (R); b = (Q) ∩ (R); c = (P) ∩ (Q) (Hình 8).

Nếu a và b có điểm chung M thì điểm M có thuộc c không?

Hoạt động khám phá 2 trang 102 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Ta có:

(P) = mp(M, d) nên (P) xác định duy nhất.

(Q) = mp(d, d’), mà M ∈ d’ nên (Q) = mp(M, d). Do đó (P) và (Q) trùng nhau.

b) Ta có: Hoạt động khám phá 2 trang 102 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Mà c = (P) ∩ (Q) nên M ∈ c.

Đánh giá

0

0 đánh giá