Sách bài tập Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 1

3.7 K

Với giải sách bài tập Toán 10 Bài tập cuối chương 1 sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài tập cuối chương 1

Giải SBT Toán 10 trang 18 Tập 1

A. Trắc nghiệm

Bài 1 trang 18 SBT Toán 10 Tập 1Mệnh đề nào sau đây đúng?

A. 0 = {0};

B. 0  {0};

C. 0  {0};

D. 0 = .

Lời giải:

Đáp án đúng là: B

Ta có {0} là một tập hợp, 0 là một phần tử nên viết 0 = {0} là sai, do đó đáp án A sai.

0 là một phần tử của tập hợp {0}, do đó ta viết 0  {0} là đúng nên đáp án B đúng.

Kí hiệu  dùng để chỉ mối quan hệ giữa các tập hợp nên đáp án C sai.

 là một tập hợp nên đáp án D sai.

Bài 2 trang 18 SBT Toán 10 Tập 1: Biết rằng P  Q là mệnh đề đúng. Mệnh đề nào sau đây đúng?

A. P là điều kiện cần để có Q;

B. P là điều kiện đủ để có Q;

C. Q là điều kiện cần và đủ để có P;

D. Q là điều kiện đủ để có P.

Lời giải:

Đáp án đúng là: B

Ta có P  Q là mệnh đề đúng, khi đó, ta có thể nói bằng một trong các cách sau:

+ P suy ra Q;

+ P kéo theo Q;

+ P là điều kiện đủ để có Q;

+ Q là điều kiện cần để có P.

Vậy trong các đáp án đã cho, đáp án B là đáp án đúng.

Bài 3 trang 18 SBT Toán 10 Tập 1: Cho số thực x. Mệnh đề nào sau đây là điều kiện đủ của “x > 1”?

A. x > 0;

B. x ≥ 1;

C. x < 1;

D. x ≥ 2.

Lời giải:

Đáp án đúng là: D

Ta có P  Q là mệnh đề đúng thì P là điều kiện đủ để có Q.

Xét các mệnh đề:

+ “Nếu x > 0 thì x > 1”, đây là mệnh đề sai, chẳng hạn ta có thể lấy x = 1, có 1 > 0 đúng nhưng 1 > 1 sai.

+ “Nếu x ≥ 1 thì x > 1”, đây là mệnh đề sai, chẳng hạn ta có thể lấy x = 1, có 1 ≥ 1 đúng nhưng 1 > 1 sai.

+ “Nếu x < 1 thì x > 1”, đây là mệnh đề sai.

+ “Nếu x ≥ 2 thì x > 1”, đây là mệnh đề đúng do 2 > 1.

Vậy mệnh đề “x ≥ 2” là điều kiện đủ của “x > 1”.

Bài 4 trang 18 SBT Toán 10 Tập 1Mệnh đề nào sau đây sai?

(1)   {0};

(2) {1}  {0; 1; 2};

(3) {0} = ;

(4) {0}  {x | x2 = x}.

A. (1) và (3);

B. (1) và (4);

C. (2) và (4);

D. (2) và (3).

Lời giải:

Đáp án đúng là: A

Ta có:  và {0} đều là các tập hợp, mà kí hiệu  dùng để chỉ mối quan hệ giữa phần tử và tập hợp nên mệnh đề (1) sai.

Tập hợp {1} gồm một phần tử là 1, phần tử này thuộc tập {0; 1; 2} nên {1}  {0; 1; 2}, do đó mệnh đề (2) đúng.

Tập  không chứa phần tử nào, tập {0} chứa một phần tử 0, nên hai tập này không thể bằng nhau, do đó mệnh đề (3) sai.

Ta có: x2 = x  x = 0 hoặc x = 1, do đó {x | x2 = x} = {0; 1}.

Có {0}  {0; 1}, từ đó suy ra {0}  {x | x2 = x} nên mệnh đề (4) đúng.

Vậy trong các mệnh đề đã cho, mệnh đề (1) và (3) là mệnh đề sai.

Bài 5 trang 18 SBT Toán 10 Tập 1Cho tập hợp M = {x  ℕ | x = 5 – m, m  ℕ}. Số phần tử của tập hợp M bằng:

A. 4;

B. 5;

C. 6;

D. 10.

Lời giải:

Đáp án đúng là: C

Do m và x là các số tự nhiên, nên ta lần lượt thay các giá trị của m bởi 0, 1, 2,... để tìm x thỏa mãn.

Ta có:

Với m = 0 thì x = 5 – 0 = 5  ℕ;

Với m = 1 thì x = 5 – 1 = 4  ℕ;

Với m = 2 thì x = 5 – 2 = 3  ℕ;

Với m = 3 thì x = 5 – 3 = 2  ℕ;

Với m = 4 thì x = 5 – 4 = 1  ℕ;

Với m = 5 thì x = 5 – 5 = 0  ℕ;

Với m = 6 thì x = 5 – 6 = – 1  ℕ, không thỏa mãn, ta dừng lại.

Vậy các giá trị x thỏa mãn là 0, 1, 2, 3, 4, 5.

Do đó, M = {0; 1; 2; 3; 4; 5} nên tập hợp M có 6 phần tử.

Bài 6 trang 18 SBT Toán 10 Tập 1: Tập hợp {y  ℕ | y = 5 – x2, x  ℕ} có bao nhiêu tập hợp con?

A. 3;

B. 4;

C. 8;

D. 16.

Lời giải:

Đáp án đúng là: C

Do y và x là các số tự nhiên, nên ta lần lượt thay các giá trị của x bởi 0, 1, 2,... để tìm y thỏa mãn. 

Ta có:

Với x = 0 thì y = 5 – 02 = 5  ℕ;

Với x = 1 thì y = 5 – 12 = 4  ℕ;

Với x = 2 thì y = 5 – 22 = 1  ℕ;

Với x = 3 thì y = 5 – 32 = – 4  ℕ, không thỏa mãn, ta dừng lại.

Vậy các giá trị y thỏa mãn là 1, 4, 5.

Do đó, {y  ℕ | y = 5 – x2, x  ℕ} = {1; 4; 5}.

Các tập con của tập hợp {1; 4; 5} là , {1}, {4}, {5}, {1; 4}, {1; 5}, {4; 5}, {1; 4; 5}.

Vậy có 8 tập con thỏa mãn.

Ngoài ra, ta có thể tính số tập con của một tập gồm k phần tử bằng cách tính 2k.

Tập {1; 4; 5} có 3 phần tử nên có 23 = 8 tập con.

Bài 7 trang 18 SBT Toán 10 Tập 1: Cho A = {– 2; – 1; 0; 1; 2}, B = {x | x + 1 ≤ 0}. Tập hợp A \ B bằng

A. {0; 1; 2};

B. {– 1};

C. {– 2; – 1};

D. {– 2}.

Lời giải:

Đáp án đúng là: A

Ta có: x + 1 ≤ 0  x ≤ 0 – 1 ⇔ x ≤ – 1.

Do đó, B = {x | x + 1 ≤ 0} = {x | x ≤ – 1} = (– ; – 1].

Vậy A \ B = {– 2; – 1; 0; 1; 2} \ (– ; – 1] = {0; 1; 2}.

Bài 8 trang 18 SBT Toán 10 Tập 1Cho các tập hợp A = {– 1; 0; 1; 2}, B = {x | x – 1 ≥ 0}. Tập hợp A \ B bằng

A. {2};

B. {– 1; 0; 1};

C. {1; 2};

D. {– 1; 0}.

Lời giải:

Đáp án đúng là: D

Ta có: x – 1 ≥ 0  x ≥ 1.

Do đó, B = {x | x – 1 ≥ 0} = {x | x ≥ 1} = [1; + ).

Vậy A \ B = {– 1; 0; 1; 2} \ [1; + ) = {– 1; 0}.

Bài 9 trang 18 SBT Toán 10 Tập 1: Cho A = {x | x là hình bình hành}, B = {x | x là hình chữ nhật}, C = {x | x là hình thoi}, D = {x | x là hình vuông}. Mệnh đề nào sau đây sai?

A. B  C = D;

B. C  D = D;

C. B  C = D;

D. B  D = D.

Lời giải:

Đáp án đúng là: C

Lấy phần tử a tùy ý thuộc D, khi đó a là một hình vuông, mà hình vuông có 4 góc bằng nhau và bằng 90° nên nó cũng là hình chữ nhật, do đó a thuộc B.

Vậy D  B nên B  D = D, đáp án D đúng.

Tương tự hình vuông thì có 4 cạnh bằng nhau nên nó cũng là một hình thoi, do đó a thuộc C. Vậy D  C nên C  D = D, đáp án B đúng.

Hình thoi có 4 cạnh bằng nhau, hình chữ nhật có 4 góc bằng nhau và bằng 90°, do đó một hình vừa là hình chữ nhật vừa là hình thoi thì nó sẽ là hình vuông nên B  C = D, đáp án A đúng.

Đáp án C sai do nếu ta có B  C = D, x  B  C thì x  D. Có x  B  C thì x là hình chữ nhật hoặc hình thoi, mà hình chữ nhật hoặc hình thoi thì chưa chắc đã là hình vuông nên vô lí.

Bài 10 trang 18 SBT Toán 10 Tập 1Cho tập hợp A = {x | x > a}, B = {x | 1 < x < 2}. Để A  (CB) = ℝ, điều kiện cần và đủ là

A. a ≤ 1;

B. a < 1;

C. a ≥ 2;

D. a > 2

Lời giải:

Đáp án đúng là: B

Ta có: A = {x | x > a} = (a; + ).

B = {x | 1 < x < 2} = (1; 2).

Lại có CB = ℝ \ B = (– ; 1]  [2; + ). 

Để A  (CB) = ℝ thì (a; +  (– ; 1]  [2; + ) = ℝ.

Từ đó suy ra a < 1.

Giải SBT Toán 10 trang 19 Tập 1

B. Tự luận

Bài 1 trang 19 SBT Toán 10 Tập 1: Cho ba tập hợp A, B, C thỏa mãn A  C, B  C và A  B = . Xét tính đúng sai của các mệnh đề sau.

a) Nếu x  A thì x  C;

b) x  A là điều kiện cần để x  C;

c) x  B là điều kiện đủ để x  C;

d) Nếu x  A thì x  B;

e) x  B là điều kiện đủ để x  A.

Lời giải:

a) Vì A  C nên mọi phần tử của A đều là phần tử của C nên x  A thì x  C, mệnh đề a) đúng.

b) Mệnh đề “Nếu x  A thì x  C” là mệnh đề đúng (theo câu a), do đó, “x  A là điều kiện đủ để x  C”, vậy b) sai.

c) Vì B  C nên mọi phần tử của B đều là phần tử của C nên x  B thì x  C, ta có mệnh đề đúng là “Nếu x  B thì x  C” hay “x  B là điều kiện đủ để x  C”, do đó c) đúng.

d) Do A  B = , nên A và B là hai tập rời nhau hay mọi phần tử của A đều khác các phần tử trong B, khi đó ta có “Nếu x  A thì x  B” là mệnh đề đúng, vậy d) đúng.

e) Do A  B = , nên A và B là hai tập rời nhau hay mọi phần tử của A đều khác các phần tử trong B, khi đó ta có “Nếu x  B thì x  A” là mệnh đề đúng, do đó mệnh đề còn được phát biểu dưới dạng “x  B là điều kiện đủ để x  A”, vậy e) đúng.

Bài 2 trang 19 SBT Toán 10 Tập 1: Cho tập hợp A = {1; 2}. Tìm tất cả các tập hợp B thỏa mãn A  B = {1; 2; 3}.

Lời giải:

Ta có: A = {1; 2} và A  B = {1; 2; 3}, mà 3  A, do đó 3  B, hơn nữa B  {1; 2; 3}.

Do đó, B là các tập con chứa phần tử 3 của tập {1; 2; 3}, đó là các tập: {3}, {1; 3}, {2; 3}, {1; 2; 3}.

Vậy các tập hợp B thỏa mãn yêu cầu là: {3}, {1; 3}, {2; 3}, {1; 2; 3}.

Bài 3 trang 19 SBT Toán 10 Tập 1: Cho hai tập hợp A = {1; 2; 3; 4}, B = {3; 4; 5}. Tìm tất cả các tập hợp M thỏa mãn M  A và M  B = .

Lời giải:

Do M  B =  nên M và B là hai tập hợp rời nhau hay mọi phần tử của tập hợp M đều khác các phần tử trong tập hợp B, do đó tập hợp M không chứa các phần tử 3; 4; 5. (1)

Lại có M  A, do đó mọi phần tử của M đều là phần tử của A nên M có thể chứa các phần tử 1; 2; 3; 4. (2).

Từ (1) và (2) suy ra M chỉ có thể chứa các phần tử 1; 2.

Do đó, M = {1}, M = {2}, M = {1; 2}.

Lại có   A và   B = , do đó M = .

Vậy các tập hợp M thỏa mãn là: , {1}, {2}, {1; 2}.

Bài 4 trang 19 SBT Toán 10 Tập 1: Một học có 36 học sinh, trong đó 20 người thích bóng rổ, 14 người thích bóng bàn và 10 người không thích môn nào trong hai môn thể thao này.

a) Có bao nhiêu học sinh của thích cả hai môn trên?

b) Có bao nhiêu học sinh của thích bóng rổ nhưng không thích bóng bàn?

Lời giải:

Kí hiệu A là tập hợp các học sinh của lớp, B = {x ∈ A | x thích bóng rổ},

C = {x  A | x thích bóng bàn}, D = {x  A | x không thích môn nào trong hai môn}.

Theo giả thiết, ta có: n(A) = 36, n(B) = 20, n(C) = 14 và n(D) = 10.

Sách bài tập Toán 10 Bài tập cuối chương 1 - Chân trời sáng tạo (ảnh 1)

a) Số học sinh thích một trong hai môn là:

n(B  C) = n(A) – n(D) = 36 – 10 = 26 (bạn).

Số học sinh thích cả hai môn thể thao trên là:

n(B  C) = n(B) + n(C) – n(B  C) = 20 + 14 – 26 = 8 (bạn).

b) Số học sinh thích bóng rổ nhưng không thích bóng bàn là:

n(B \ C) = n(B) – n(B  C) = 20 – 8 = 12 (bạn).   

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Các phép toán trên tập hợp

Bài 1: Bất phương trình bậc nhất hai ẩn

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Lý thuyết Chương 1: Mệnh đề và tập hợp

1. Mệnh đề

- Những khẳng định có tính hoặc đúng hoặc sai được gọi là mệnh đề logic (hay mệnh đề).

- Mệnh đề là một khẳng định đúng hoặc sai.

- Một khẳng định đúng gọi là mệnh đề đúng.

- Một khẳng định sai gọi là mệnh đề sai.

- Một mệnh đề không thể vừa đúng vừa sai.

Chú ý:

+ Người ta thường sử dùng các chữ cái in hoa P, Q, R, … để kí hiệu các mệnh đề.

+ Những mệnh đề liên quan đến toán học được gọi là mệnh đề toán học.

2. Mệnh đề chứa biến

- Mệnh đề chứa biến là mệnh đề chưa khẳng định được tính đúng sai, cần có giá trị cụ thể của biến mới có thể khẳng định tính đúng sai của mệnh đề đó.

- Ta thường kí hiệu mệnh đề chứa biến n là P (n).

- Một mệnh đề chứa biến có thể chứa một biến hoặc nhiều biến.

3. Mệnh đề phủ định

- Mỗi mệnh đề P có mệnh đề phủ định, kí hiệu là .

- Mệnh đề P và mệnh đề phủ định  của nó có tính đúng sai trái ngược nhau. Nghĩa là khi P đúng thì  sai, khi P sai thì  đúng.

Nhận xét:

+ Thông thường để phủ định một mệnh đề, người ta thường thêm (hoặc bớt) từ “không” hoặc “không phải” vào trước vị ngữ của mệnh đề đó.

4. Mệnh đề kéo theo

- Cho hai mệnh đề P và Q. Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo, kí hiệu là P  Q.

- Mệnh đề P  Q chỉ sai khi P đúng và Q sai.

Nhận xét:

+ Mệnh đề P  Q còn được phát biểu là “P kéo theo Q” hoặc “Từ P suy ra Q”.

+ Để xét tính đúng sai của mệnh đề P  Q, ta chỉ cần xét trường hợp P đúng. Khi đó, nếu Q đúng thì mệnh đề đúng, nếu Q sai thì mệnh đề sai. Ta đã quen với điều này khi chứng minh nhiều định lí ở Trung học cơ sở.

5. Mệnh đề đảo. Hai mệnh đề tương đương

- Mệnh đề Q  P được gọi là mệnh đề đảo của mệnh đề  Q.

Chú ý: Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

- Nếu cả hai mệnh đề  Q và Q  P đều đúng thì ta nói P và Q là hai mệnh đề tương đương, kí hiệu là P  Q (đọc là “P tương đương Q” hoặc “P khi và chỉ khi Q”).

- Khi đó ta cũng nói P là điều kiện cần và đủ để có Q (hay Q là điều kiện cần và đủ để có P).

Nhận xét: Hai mệnh đề P và Q tương đương khi chúng cùng đúng hoặc cùng sai.

6. Mệnh đề chứa kí hiệu  và 

- Kí hiệu  đọc là “với mọi”.

- Kí hiệu  đọc là “tồn tại”.

- Mệnh đề “ M, P(x)” đúng nếu với mọi x0  M, P(x0) là mệnh đề đúng.

- Mệnh đề “ M, P(x)” đúng nếu có x0  M sao cho P(x0) là mệnh đề đúng.

7. Nhắc lại về tập hợp

- Trong toán học, người ta dùng từ tập hợp để chỉ một nhóm đối tượng nào đó hoàn toàn xác định. Mỗi đối tượng trong nhóm gọi là một phần tử của tập hợp đó.

- Người ta thường kí hiệu tập hợp bằng các chữ cái in hoa A, B, C, … và kí hiệu phần tử của tập hợp bằng các chữ cái in thường a, b, c, ….

Chú ý: Đôi khi, để ngắn gọn, người ta dùng từ “tập” thay cho “tập hợp”.

- Để chỉ a là một phần tử của tập hợp A, ta viết a  A (đọc là “a thuộc A”). Để chỉ a không là phần tử của tập hợp A, ta viết a  A (đọc là “a không thuộc A”).

- Một tập hợp có thể không chứa phần tử nào. Tập hợp như vậy gọi là tập rỗng, kí hiệu .

- Người ta thường kí hiệu các tập hợp số như sau: ℕ là tập hợp các số tự nhiên, ℤ là tập hợp các số nguyên, ℚ là tập hợp các số hữu tỉ, ℝ là tập hợp các số thực.

*Cách xác định tập hợp

Cách 1. Liệt kê các phần tử của tập hợp;

Cách 2. Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.

Chú ý: Khi liệt kê các phần tử của tập hợp, ta có một số chú ý sau đây:

+ Các phần tử có thể được viết theo thứ tự tùy ý.

+ Mỗi phần tử chỉ được liệt kê một lần.

+ Nếu quy tắc xác định các phần tử đủ rõ thì người ta dùng “…” mà không nhất thiết viết ra tất cả các phần tử của tập hợp.

- Có những tập hợp ta có thể đếm hết các phần tử của chúng. Những tập hợp như vậy được gọi là tập hợp hữu hạn.

8. Tập con và hai tập hợp bằng nhau

- Cho hai tập hợp A và B. Nếu mọi phần tử của A đều là phần tử của B thì ta nói tập hợp A là tập con của tập hợp B và kí hiệu A  B (đọc là A chứa trong B), hoặc B  A (đọc là B chứa A).

Nhận xét:

+ A  A và   A với mọi tập hợp A.

+ Nếu A không phải là tập con của B thì ta kí hiệu A  B (đọc là A không chứa trong B hoặc B không chứa A).

+ Nếu A  B hoặc B  A thì ta nói A và B có quan hệ bao hàm.

- Trong toán học, người ta thường minh họa một tập hợp bằng một hình phẳng được bao quanh bởi một đường cong kín, gọi là biểu đồ Ven.

Chú ý: Giữa các tập hợp số quen thuộc (tập số tự nhiên, tập số nguyên, tập số hữu tỉ, tập số thực), ta có quan hệ bao hàm:  ℕ  ℤ  ℚ  ℝ.

9. Một số tập con của tập hợp số thực

- Ta thường sử dụng các tập con của tập số thực sau đây (a và b là các số thực, a < b):

Tên gọi và kí hiệu

Tập hợp

Biểu diễn trên trục số

Tập số thực (-∞; +∞)

Đoạn [a; b]

{x ∈ ℝ | a ≤  x ≤ b}

Khoảng (a; b)

{x ∈ ℝ | a < x < b}

Nửa khoảng [a; b)

{x ∈ ℝ | a ≤  x < b}

Nửa khoảng (a; b]

{x ∈ ℝ | a < x ≤ b}

Nửa khoảng (-∞; a]

{x ∈ ℝ |  x ≤ a}

Nửa khoảng [a; +∞)

{x ∈ ℝ | x ≥ a}

Khoảng (-∞; a)

{x ∈ ℝ | x < a}

Khoảng (a; +∞)

{x ∈ ℝ | x > a}

- Trong các kí hiệu trên, kí hiệu - ∞ đọc là âm vô cực 

10. Hợp và giao của các tập hợp

- Cho hai tập hợp A và B.

Tập hợp các phần tử thuộc A hoặc thuộc B gọi là hợp của hai tập hợp A và B, kí hiệu A  B.

 B = {x| x  A hoặc x  B}.

Tập hợp các phần tử thuộc cả hai tập hợp A và B gọi là giao của hai tập hợp A và B, kí hiệu A ∩ B.

A ∩ B = {x | x  A và x  B}.

Nhận xét:

+ Nếu A và B là hai tập hợp hữu hạn thì n(A  B) = n(A) + n(B) – n(A ∩ B).

+ Đặc biệt, nếu A và B không có phần tử chung, tức A ∩ B = , thì n(A  B) = n(A) + n(B).

11. Hiệu của hai tập hợp, phần bù của tập con

- Cho hai tập hợp A và B.

Tập hợp các phần tử thuộc A nhưng không thuộc B gọi là hiệu của A và B, kí hiệu A\B.

A\B = {x | x  A và x  B}.

Nếu A là tập con của E thì hiệu E\A gọi là phần bù của A trong E, kí hiệu CEA.

Chú ý: Trong các chương sau, để tìm các tập hợp là hợp, giao, hiệu, phần bù của những tập con của tập số thực, ta thường vẽ sơ đồ trên trục số.

Đánh giá

0

0 đánh giá