Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây (mới 2023 + bài tập) hay, chi tiết - Toán 9

1.7 K

Với tóm tắt lý thuyết Toán lớp 9 Liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết cùng với bài tập chọn lọc có đáp án giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 9.

Toán 9 Bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây

A. Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây

1. Định lý 1

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

Trong một đường tròn:

a) Hai dây bằng nhau thì cách đều tâm.

b) Hai dây cách đều tâm thì bằng nhau.

Áp dụng vào hình vẽ như sau:

Ta có OH ⊥ AB; OK ⊥ CD.

AB = CD ⇔ OH = OK

2. Định lý 2

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

Trong hai dây của một đường tròn:

a) Dây nào lớn hơn thì dây đó gần tâm hơn.

b) Dây nào gần tâm hơn thì dây đó lớn hơn.

Áp dụng vào hình vẽ như sau:

Ta có: OA = OB = OC = OD = R

OH < OK ⇒ AB > CD

Do

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

3. Ví dụ cụ thể

Câu 1: Cho đường tròn tâm O có bán kính là 5cm, dây AB dài 8cm.

a) Tính khoảng cách từ tâm O đến dây AB.

b) Gọi I là điểm thuộc dây AB sao cho AI = 1cm. Kẻ dây CD qua I vuông góc với AB. Chứng minh rằng CD = AB

Hướng dẫn:

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

a) Gọi H là trung điểm của AB.

AH = HB = AB/2 = 4 cm

⇒ OH ⊥ AB.

Khi đó:

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

b)Điểm I nằm giữa A và H nên: AI + IH = AH

suy ra: IH = AH – AI = 4 - 1= 3 cm

Từ O kẻ OK ⊥ CD.

Ta có OKIH là hình chữ nhật mà có OH = IH = 3cm ⇒ OKIH là hình vuông

Nhận xét: Khoảng cách từ O đến AB bằng khoảng cách từ O đến CD nên

Giải thích:

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

B. Bài tập tự luận

Câu 1: Cho đường tròn tâm O bán kính là 5, dây AB = 8

a) Tính khoảng cách từ O đến AB

b) Gọi I là điểm thuộc dây AB sao cho AI = 1 , kẻ dây CD đi qua I vuông góc với AB. Chứng minh rằng AB = CD

Lời giải

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

a) Gọi E là hình chiếu của O lên AB

Khoảng cách từ O đến AB chính là độ dài đoạn OE

Ta có: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

b) Gọi F là hình chiếu của O lên CD

Khi đó khoảng cách của O đến CD chính là OF

Tứ giác OFIE có ba góc vuông nên là hình chữ nhật

Do đó: OF = EI = AE - AI = 4 - 1 = 3

Suy ra OE = OF theo định lí 1 nên AB = CD

Câu 2: Cho đường tròn (O; R) . Lấy các điểm A và B trên đường tròn. Trên bán kính OA, OB lấy các điểm M, N sao cho OM = ON . Vẽ dây CD đi qua MN; M giữa C và N

a) Chứng minh: CM = DN

b) Giả sử Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án. Tính OM theo R sao cho CM = MN = ND

Lời giải

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

a) Xét hai tam giác COM và DON có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

b) Gọi H là hình chiếu vuông góc của O lên MN

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Đánh giá

0

0 đánh giá