Lý thuyết Diện tích hình thang (mới 2023 + bài tập) - Toán 8

2.3 K

Với tóm tắt lý thuyết Toán lớp 8 Diện tích hình thang hay, chi tiết cùng với bài tập chọn lọc có đáp án giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 8.

Lý thuyết Diện tích hình thang

A. Lý thuyết

1. Công thức diện tích của hình thang

Diện tích hình thang bằng một nửa tích của tổng hai đáy với chiều cao.

Lý thuyết Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có: S = 1/2( a + b ).h

Lý thuyết tính diện tích hình thang: Muốn tính diện tích hình thang ta cộng tổng hai đáy rồi nhân với chiều cao, sau đó chia đôi.

Ví dụ: Cho hình thang ABCD ( AB//CD ) có AB = 3cm; CD = 5cm, chiều cao hình thang là h = 4cm. Tính diện tích hình thang ?

Hướng dẫn:

Diện tích hình thang cần tìm là SABCD = 1/2( AB + CD ).h = 1/2( 3 + 5 ).4 = 16( cm2 )

2. Công thức tính diện tích hình bình hành

Lý thuyết Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có : S = a.h

Ví dụ: Cho hình bình hành ABCD ( AB//CD ) có AB = CD = 5cm, độ dài đường cao hình bình hành là h = 4cm. Tính diện tích của hình bình hành?

Hướng dẫn:

Diện tích hình hình hành là SABCD = AB.h = 4.5 = 20( cm2 )

B. Bài tập tự luyện

Bài 1: Tính diện tích mảnh đất hình thang ABED có AB = 23cm, DE = 31cm và diện tích hình chữ nhật ABCD là 828cm2.

Hướng dẫn:

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Theo bài ra ta có SABCD = AB.BC = 23.BC = 828 ⇒ BC = 36 ( cm )

Khi đó ta có

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy diện tích hình thang ABED là 972( cm2 )

Bài 2: Hai cạnh của một hình bình hành có độ dài là 6cm và 8cm. Một trong các đường cao có độ dài là 5cm. Tính độ dài đường cao thứ hai. Hỏi bài toán có mấy đáp án ?

Hướng dẫn:

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình bình bình ABCD có AB = CD = 8( cm ) và AD = BC = 6( cm )

Từ A kẻ các đường cao AH,AK.

Khi đó ta có:

+ Shbh = AH.CD = 8.AH

+ Shbh = AK.BC = 6.AK

Mà một hình bình hành thì chỉ có một diện tích chung nên 8.AH = 6.AK

Nếu độ dài đường cao thứ nhất là AH = 5( cm ) thì:

8.5 = 6.AK ⇔ AK = (8.5)/6 = 20/3( cm ) là độ dài đường cao thứ hai.

Nếu độ dài đường cao thứ nhất là AK = 5( cm ) thì:

8.AH = 6.5 ⇔ AH = (6.5)/8 = 15/4( cm ) là độ dài đường cao thứ hai.

Vậy bài toán này có hai đáp số

Đánh giá

0

0 đánh giá