Với giải Bài 23 trang 104 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 3: Đường thẳng và mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 3: Đường thẳng và mặt phẳng song song
Bài 23 trang 104 SBT Toán 11: Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, AD, BC, CD. Chứng minh rằng giao tuyến của hai mặt phẳng (APQ) và (CMN) song song với đường thẳng BD.
Lời giải:
Vì MN là đường trung bình của tam giác ABD nên MN // BD.
Mà MN ⊂ (CMN) nên BD // (CMN).
Vì PQ là đường trung bình của tam giác BCD nên PQ // BD.
Mà PQ ⊂ (APQ) nên BD // (APQ).
Trong mặt phẳng (ABC), gọi I là giao điểm của AP và MC; trong mặt phẳng (ACD), gọi J là giao điểm của AQ và NC. Khi đó, IJ là giao tuyến của hai mặt phẳng (APQ) và (CMM). Mà BD // (CMN) và BD // (APQ) nên IJ // BD.
Xem thêm lời giải sách bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Xem thêm các bài giải SBT Toán 11 Cánh diều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian