50 Bài tập Đường tròn ngoại tiếp. Đường tròn nội tiếp (có đáp án)- Toán 9

Tải xuống 5 2.1 K 22

Tailieumoi.vn xin giới thiệu Bài tập Toán 9 Chương 3 Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp. Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 9. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 3 Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp. Mời các bạn đón xem:

Bài tập Toán 9 Chương 3 Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

A. Bài tập Đường tròn ngoại tiếp. Đường tròn nội tiếp

I. Bài tập trắc nghiệm

Câu 1: Đường tròn ngoại tiếp đa giác là đường tròn

A. Tiếp xúc với tất cả các cạnh của đa giác đó

B. Đi qua tất cả các đỉnh của đa giác đó

C. Cắt tất cả các cạnh của đa giác đó

D. Đi qua tâm đa giác đó

Lời giải:

Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp của đa giác

Chọn đáp án B

Câu 2: Số đường tròn nội tiếp của một đa giác đều là

A. 1

B. 2

C. 3

D. 0

Lời giải:

Bất kì đa giác đều nào cũng có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp

Chọn đáp án A

Câu 3: Đường tròn nội tiếp hình vuông cạnh a có bán kính là

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án C

Câu 4: Cho lục giác đều ABCDEF nội tiếp đường tròn tâm O. Tính số đo góc AOB

A. 60°

B. 120°

C. 30°

D. 240°

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Ta có :

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án A

Câu 5: Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O). Tính bán kính R của đường tròn

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Do O là tâm của đường tròn ngoại tiếp tam giác đều ABC nên O đồng thời là trọng tâm tam giác ABC.

Gọi M là trung điểm BC:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B.

Câu 6: Cho hình vuông ABCD cạnh a.Gọi O là tâm đường tròn ngoại tiếp hình vuông. Tính bán kính R của (O)?

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Gọi O là tâm của hình vuông ABCD

Khi đó, bán kính đường tròn ngoại tiếp hình vuông ABCD là R = OA

Áp dụng đinh lí Pytago vào tam giác vuông ABC ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án C.

Câu 7: Cho ngũ giác đều ABCDE nội tiếp đường tròn (O). Tính số đo AB⌢

A. 72°

B.60°

C. 120°

D. 90°

Do ABCDE là ngũ giác đều nội tiếp đường tròn (O) nên:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Suy ra, sđ AB⌢ = 72°

Chọn đáp án A.

Câu 8: Cho đường tròn (O) ngoại tiếp lục giác đều ABCDEF. Tính Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

A. 120°

B.60°

C. 90°

D. 150°

Ta có, đường tròn (O) ngoại tiếp lục giác đều ABCDEF nên

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án A.

Câu 9: Cho tam giác ABC đều cạnh a ngoại tiếp đường tròn tâm O. Tính bán kính đường tròn nội tiếp tam giác ABC?

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Gọi M là trung điểm của BC: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC

Áp dụng định lí Pytago vào tam giác ABM ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án C.

Câu 10: Cho tam giác ABC có AB = 6cm; BC= 10 cm và AC = 8cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC?

A. 4cm

B. 5cm

C. 6cm

D. 7cm

Ta có: AB2 + AC2 = BC2 ( = 100)

Suy ra tam giác ABC vuông tại A.

Do đó, tâm đường tròn ngoại tiếp tam giác ABC là trung điểm cạnh huyền BC.

Đường kính đường tròn là : d = BC = 10cm

Suy ra, bán kính đường tròn ngoại tiếp tam giác ABC là R = d/2 = 5cm

Chọn đáp án B.

Câu 11: Tính cạnh của một ngũ giác đều nội tiếp đường tròn bán kính 5cm (làm tròn đến chữ số thập phân tứ nhất).

A. 5,9cm    

B. 5,8cm    

C. 5,87cm  

D. 6cm

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

+) Vì AB = BC = CD = DE = EA nên các cung AB, BC, CD, DE, EA bằng nhau

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

+) Xét tam giác AOB cân tại O có OF là đường cao cũng là đường phân giác nên Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án = 36o

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Đáp án cần chọn là: A

Câu 12: Tính cạnh của một ngũ giác đều ngoại tiếp đường tròn bán kính 4cm (làm tròn đến chữ số thập phân tứ nhất).

A. 5,8cm    

B. 5,81cm  

C. 11,01cm

D. 11,0cm

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Gọi O là tâm đường tròn nội tiếp ngũ giác đều ABCDE, đường cao OF ⊥ AB

Khi đó bán kính của (O) là OF = 4cm

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Xét tam giác OFB có

FB = OF. tan 36o = 4. tan 36o ⇒ AB = 8. tan 36o  5,8 cm

Đáp án cần chọn là: A

Câu 13: Tính cạnh của một ngũ giác đều ngoại tiếp đường tròn bán kính 5cm (làm tròn đến chữ số thập phân tứ nhất).

A. 7,26cm  

B. 7,3cm    

C. 7,2cm    

D. 13,7cm

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Gọi O là tâm đường tròn nội tiếp ngũ giác đều ABCDE, đường cao OF ⊥ AB

Khi đó bán kính của (O) là OF = 5cm

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Xét tam giác OFB có

FB = OF. tan 36o = 5. tan 36o ⇒ AB = 10. tan 36o  7,3 cm

Đáp án cần chọn là: B

Câu 14: Tính cạnh của hình vuông nội tiếp (O; R)

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Gọi A, B, C, D là hình vuông cạnh A nội tiếp đường tròn (O) suy ra O là giao điểm hai đường chéo AC và BD

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Đáp án cần chọn là: C

*Chú ý: Một số em có thể tính toán sai ở bước cuối Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án ra đáp án A sai. Hoặc quên lấy căn thức của 2 dẫn đến phương án B sai

Câu 15: Tính cạnh của hình vuông nội tiếp (O; 3)

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Lời giải:

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Gọi ABCD là hình vuông cạnh a nội tiếp đường tròn (O) suy ra O là giao điểm hai đường chéo AC và BD.

Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án

Đáp án cần chọn là: A

*Chú ý: Một số em có thể tính toán sai ở bước cuối Trắc nghiệm Đường tròn ngoại tiếp. Đường tròn nội tiếp có đáp án ra đáp án A sai

II. Bài tập tự luận có lời giải

Câu 1: Một đường tròn có bán kính R = 3cm. Tính diện tích hình vuông nội tiếp đường tròn đó.

Lời giải:

Ta có: Bán kính đường tròn ngoại tiếp:

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

Do tứ giác nội tiếp là hình vuông với n = 4, khi đó: a = R√2 = 3√2.

Diện tích hình vuông là: S = a2 = (3√2)2 = 18 cm2.

III. Bài tập vận dụng

Câu 1: Chứng minh rằng: Trong hình vuông, bán kính đường tròn ngoại tiếp luôn lớn hơn bán kính đường tròn nội tiếp của hình vuông đó.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Câu 2: Cho lục giác đều ABCDEF có tâm O. Đặt R, r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp lục giác. Viết biểu thức liên hệ giữa R và r.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

B. Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp

1. Định nghĩa

Ví dụ 1. Đường tròn (O) đi qua tất cả các đỉnh của tứ giác ABCD như hình vẽ.

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Do đó ta gọi đường tròn (O) ngoại tiếp tứ giác ABCD hay tứ giác ABCD nội tiếp đường tròn.

- Đường tròn tiếp xúc với tất cả các cạnh của một đa giác được gọi là đường tròn nội tiếp đa giác và đa giác được gọi là đa giác ngoại tiếp đường tròn.

Ví dụ 2. Đường tròn (I) tiếp xúc với tất cả các cạnh của tứ giác MNPQ như hình vẽ.

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Do đó ta gọi đường tròn (I) nội tiếp tứ giác MNPQ hay tứ giác MNPQ ngoại tiếp đường tròn.

2. Định lí

- Bất kì đa giác đều nào cũng có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.

- Trong tam giác đều, tâm của đường tròn ngoại tiếp trùng với tâm của đường tròn nội tiếp và được gọi là tâm của đa giác đều.

Ví dụ 3. Tam giác ABC đều có tâm đường tròn nội tiếp trùng với tâm đường tròn ngoại tiếp là tâm O và O được gọi là tâm của tam giác đều ABC.

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Trong tam giác đều, đường cao đồng thời là đường trung tuyến, đường phân giác, đường phân giác.

Do đó, tâm này là giao điểm hai đường trung tuyến hoặc trung trực của hai cạnh hoặc là hai đường phân giác của hai góc hoặc là đường cao xuất phát từ hai đỉnh của tam giác đều.

3. Mở rộng

- Bán kính đường tròn ngoại tiếp đa giác là khoảng cách từ tâm đến đỉnh.

- Bán kính đường tròn nội tiếp đa giác là khoảng cách từ tâm O đến một cạnh.

Cho n-giác đều cạnh a. Khi đó:

- Chu vi của đa giác: 2p = na (p là nửa chu vi).

- Mỗi góc ở đỉnh của đa giác có số đo bằng (n2)  .  180on.

- Mỗi góc ở tâm của đa giác có số đo bằng 360on.

- Bán kính đường tròn ngoại tiếp: R=a2sin180ona=2R  .  sin180on

- Bán kính đường tròn nội tiếp: 

r=a2tan180ona=2r  .  tan180on

- Liên hệ giữa bán kính đường tròn ngoại tiếp và nội tiếp: R2r2=a24.

- Diện tích đa giác đều: S=12nar.

Ví dụ 4.

a) Một hình vuông nội tiếp đường tròn (O; R). Tính mỗi cạnh của hình vuông theo R.

b) Một lục giác đều ngoại tiếp đường tròn (O; r). Tính mỗi cạnh của lục giác theo r.

Lời giải:

a) Cạnh của hình vuông là:

a=2R  .  sin180on=2R  .  sin140o=2R  .  22=R2

Vậy hình vuông nội tiếp (O; R) có độ dài mỗi cạnh là R2.

b) Cạnh của lục giác đều là:

a=2r  .  tan180on=2r  .  tan30o=2r  .  33=233r

Vậy lục giác đều ngoại tiếp (O; r) có độ dài mỗi cạnh là 233r.

Xem thêm
50 Bài tập Đường tròn ngoại tiếp. Đường tròn nội tiếp (có đáp án)- Toán 9 (trang 1)
Trang 1
50 Bài tập Đường tròn ngoại tiếp. Đường tròn nội tiếp (có đáp án)- Toán 9 (trang 2)
Trang 2
50 Bài tập Đường tròn ngoại tiếp. Đường tròn nội tiếp (có đáp án)- Toán 9 (trang 3)
Trang 3
50 Bài tập Đường tròn ngoại tiếp. Đường tròn nội tiếp (có đáp án)- Toán 9 (trang 4)
Trang 4
50 Bài tập Đường tròn ngoại tiếp. Đường tròn nội tiếp (có đáp án)- Toán 9 (trang 5)
Trang 5
Tài liệu có 5 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống