Tailieumoi.vn xin giới thiệu chuyên đề Phép đối xứng trục thuộc chương trình Toán 11. Chuyên đề gồm 16 trang với đầy đủ lý thuyết, phương pháp giải các dạng bài tập và trên 200 bài tập có lời giải chi tiết từ cơ bản đến nâng cao giúp học sinh ôn luyện kiến thức, nâng cao kĩ năng làm bài tập môn Toán 11.
Chuyên đề Phép đối xứng trục
Phần 1: Dạng bài Tính chất đối xứng trục hay, chi tiết
[1]. Định nghĩa phép đối xứng trục.
Cho đường thẳng d. Phép biến hình biến mỗi điểm M thuộc d thành chính nó, biến mỗi điểm M không thuộc d thành M'sao cho d là đường trung trực của đoạn thẳng MM'được gọi là phép đối xứng qua đường thẳng d hay phép đối xứng trục d.
Đường thẳng d được gọi là trục của phép đối xứng hoặc đơn giản gọi là trục đối xứng.
Phép đối xứng trục d thường được kí hiệu là Dd.
Đường thẳng d được gọi là trục của phép đối xứng hoặc đơn giản gọi là trục đối xứng.
Phép đối xứng trục d thường được kí hiệu là Dd.
Nếu hình H' là ảnh của hình H qua phép đối xứng trục d thì ta còn nói H đối xứng với H' qua d, hay H và H' đối xứng với nhau qua d.
Nhận xét:
• Cho đường thẳng d. Với mỗi điểm M, gọi M0 là hình chiếu vuông góc của M trên đường thẳng d. Khi đó
•
[2]. Tính chất
Tính chất 1
Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kì.
Tính chất 2
Phép đối xứng trục biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.
[3].Trục đối xứng của một hình
Định nghĩa
Đường thẳng d gọi là trục đối xứng của hình H nếu phép đối xứng qua d biến hình H thành chính nó.
Khi đó ta nói H là hình có trục đối xứng.
Ví dụ 1: Cho góc nhọn xOy và điểm A thuộc miền trong của góc đó, điểm B thuộc cạnh Ox (B khác O). Tìm C thuộc Oy sao cho chu vi tam giác ABC nhỏ nhất?
Hướng dẫn giải:
Gọi M là điểm đối xứng với A qua Ox. Vì B ∈ Ox nên suy ra BA = BM.
Gọi N là điểm đối xứng với A qua Oy Vì C ∈ Oy nên suy ra CA = CN.
Chu vi tam giác: PΔABC = AB + BC + CA = BM + BC + CN. (*)
Theo bất đẳng thức tam giác mở rộng, ta có
MB + BC ≥ MC và MC + CN ≥ MN.
Kết hợp với (*), suy ra
PΔABC = (MB + BC) + CN ≥ MC + CN ≥ MN.
Dấu "=" xảy ra khi và chỉ khi B, C, M, N thẳng hàng hay C là giao điểm của BM với trục Oy.
Ví dụ 2: Cho đường thẳng d và hai điểm A,B nằm cùng phía với d. Tìm điểm M trên d sao cho MA+MB đạt giá trị nhỏ nhất ?
Hướng dẫn giải:
- Tìm điểm A’ đối xứng với A qua d
- Nối A’B cắt d tại M. M chính là điểm cần tìm.
- Thật vậy: Vì A’ đối xứng với A qua d cho nên MA = MA’ (1). Do đó: MA + MB = MA’ + MB = A’B .
- Giả sử tồn tại M’ khác M thuộc d thì: M’A + M’B = M’A’ + M’B ≥ A'B. Dấu bằng chỉ xảy ra khi A’; M’; B thẳng hàng. Nghĩa là M trùng với M’.
Ví dụ 3: Cho đường thẳng d và hai điểm A,B (nằm về hai phía của d). Tìm điểm M trên d sao cho |MA - MB| đạt GTLN .
Hướng dẫn giải:
- Gọi A’ là điểm đối xứng với A qua d
- Nối A’B cắt d tại M. M chính là điểm cần tìm.
- Thật vậy: |MA - MB| = |MA' - MB| = A'B.
Giả sử tồn tại một điểm M’ khác với M trên d, khi đó: |M'A - M'B| = |M'A' - M'B| ≤ A'B. Dấu bằng chỉ xảy ra khi M’; A’; B thẳng hàng, nghĩa là M trùng với M’.
Phần 2: Tìm ảnh của một điểm qua phép đối xứng trục cực hay
Biểu thức tọa độ:
Trong hệ trục tọa độ Oxy
Ví dụ 1: Trong mặt phẳng tọa độ Oxy cho điểm M(2;3). Tìm ảnh của điểm M qua phép đối xứng trục Ox.
Hướng dẫn giải:
Biểu thức tọa độ qua phép đối xứng trục Ox:
Với mỗi M(x;y) gọi M' = DOx(M) = (x';y') thì
Ví dụ 2: Trong mặt phẳng tọa độ Oxy cho điểm A(3;5). Tìm ảnh của điểm M qua phép đối xứng trục Ox.
Hướng dẫn giải:
Ta có:
Ví dụ 3: Trong mặt phẳng tọa độ Oxy, cho phép đối xứng trục Đa, với a là đường thẳng có phương trình: 2x - y = 0. Lấy A(2;2); tìm ảnh của A qua phép đối xứng trục a.
Hướng dẫn giải:
Phần 3: Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay
Cách 1. Sử dụng tính chất của phép đối xứng trục
Cách 2. Sử dụng biểu thức tọa độ đối với phép đối xứng qua trục Ox hoặc Oy
Ví dụ 1: Trong mặt phẳng tọa độ Oxy cho đường thẳng d: x + y - 3 = 0. Tìm ảnh của đường thẳng d qua phép đối xứng trục Ox.
Hướng dẫn giải:
Trục Ox có phương trình y = 0.
• Tọa độ giao điểm A của d và Ox là nghiệm của hệ
• Vì A ∈ Ox nên qua phép đối xứng trục Ox biến thành chính nó, tức A'≡A(3;0).
Chọn điểm
• Gọi đường thẳng d' là ảnh của d qua phép đối xứng trục Ox khi đó d’ đi qua hai điểm A'(3;0) và B'(1;-2)
Ví dụ 2: Trong mặt phẳng tọa độ Oxy cho đường thẳng Δ có phương trình 7x + y - 3 = 0. Tìm ảnh của Δ qua phép đối xứng trục Oy.
Hướng dẫn giải:
(Sử dụng biểu thức tọa độ)
Biểu thức tọa độ qua phép đối xứng trục tung là
Thay vào Δ, ta được 7(-x') + y' - 3 = 0 hay 7x' - y' + 3 = 0.
Vậy ảnh của Δlà: Δ': 7x - y + 3 = 0
Ví dụ 3: Cho đường thẳng (d) có phương trình x + y-7 = 0 và đường thẳng (Δ) có phương trình 2x - y - 2 = 0. Phương trình đường thẳng (d') là ảnh của đường thẳng (d) qua phép đối xứng trục (Δ) là
Hướng dẫn giải:
• Gọi M = (d)∩(Δ) khi đó tọa độ của M là nghiệm của hệ:
Lấy N(1;6) ∈ (d).
• Gọi (d1) là đường thẳng qua N và vuông góc với (Δ), khi đó: (d1): x + 2y + c = 0
N(1;6) ∈ (d1) ⇒ 1 + 2.6 + c = 0 ⇒ c = -13 ⇒ (d1): x + 2y - 13 = 0
• Gọi I = (d1)∩(Δ) khi đó tọa độ của I là nghiệm của hệ:
• Gọi N' là ảnh của N qua phép đối xứng trục (Δ) ⇒ I là trung điểm của NN' nên suy ra:
• (d') là ảnh của đường thẳng (d) qua phép đối xứng trục (Δ)
Phần 4: Tìm ảnh của một đường tròn qua phép đối xứng trục cực hay
Phép đối xứng trục biến một đường tròn thành đường tròn có cùng bán kính
Cách 1.
Bước 1: Tìm ảnh I’ của âm I là tâm của đường tròn (C) qua phép đối xứng trục.
Bước 2: Viết phương trình đường tròn (C’) với tâm I’ và bán kính R’ = R.
Cách 2. Sử dụng biểu thức tọa độ với trường hợp trục đối xứng là Ox hoặc Oy
Ví dụ 1: Trong mặt phẳng tọa độ Oxy cho đường tròn (C): (x - 3)2 + (y + 5)2 = 36. Viết phương trình đường tròn (C') là ảnh của (C) qua phép đối xứng trục Ox
Hướng dẫn giải:
Cách 1. Đường tròn (C) có tâm I(3;-5) và bán kính R = 6
Ta có
Do đó (C') có phương trình (x - 3)2 + (y - 5)2 = 36.
Cách 2. Biểu thức tọa độ qua phép đối xứng trục Ox là
Thay vào (C), ta được (x' - 3)2 + (-y' + 5)2 = 36 hay (x' - 3)2 + (y' - 5)2 =36.
Vậy (C') có phương trình (x - 3)2 + (y - 5)2 = 36.
Ví dụ 2: Trong mặt phẳng tọa độ Oxy, cho đường tròn(C): (x - 2)2 + (y + 5)2 = 16. Viết phương trình đường tròn (C')là ảnh của đường tròn (C) qua phép đối xứng trục Oy.
Hướng dẫn giải:
Đường tròn có tâm I(2;-5); bán kính R = 4.
Ảnh của tâm I(2;-5) qua trục Oylà I'(-2;-5).
Do đó ảnh của đường tròn qua trục Oylà (C'): (x + 2)2 + (y + 5)2 = 16.
Ví dụ 3: Cho đường tròn (C): x2 + y2 -4x + 2y + 1 = 0 và đường thẳng d: 2x - y + 2 = 0. Hãy viết phương trình của đường tròn (C’) là ảnh của (C) qua phép đối xứng trục d.
Hướng dẫn giải:
Đường tròn (C) có tâm I(2;-1) và bán kính R = 2.
Gọi Hlà hình chiếu vuông góc của I lên d ⇒ IH ⊥ d ⇒ IH: x + 2y + c = 0.
I(2;-1) ∈ IH ⇒ 2 + 2.(-1) + c = 0 ⇒ c = 0 ⇒ IH: x + 2y = 0.
Gọi H=Δ∩d khi đó H là nghiệm của hệ:
- Gọi I’(x;y) là tâm của (C’).Khi đó H là trung điểm của II’
- Vậy (C’):
Tìm ảnh của điểm, đường thẳng qua phép đối xứng trục, đối xứng tâm bằng phương pháp tọa độ
I. Phương pháp:
1. Xác định ảnh của một điểm qua phép đối xứng trục, đối xứng tâm.
- Sử dụng biểu thức tọa độ.
2. Xác định ảnh của đường thẳng qua hình qua phép đối xứng trục, đối xứng tâm.
Cách 1: Chọn hai điểm A,B phân biệt trên , xác định ảnh tương ứng qua phép đối xứng trục, đối xứng tâm. Đường thẳng cần tìm là đường thẳng qua hai ảnh .
Cách 2:
Dựa vào vị trí tương đối của đường thẳng và trục đối xứng để tìm ảnh .
Áp dụng tính chất phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
Cách 3: Sử dụng quỹ tích
Với mọi điểm qua phép đối xứng trục hoặc đối xứng tâm sẽ biến thành .
Từ biểu thức tọa độ rút thế vào phương trình đường thẳng ta được phương trình đường thẳng ảnh .
3. Xác định ảnh của một hình H (đường tròn, elips, parabol..)
Sử dụng quỹ tích: với mọi điểm thuộc hình H, qua phép đối xứng trục hoặc đối xứng tâm sẽ biến thành thì thuộc ảnh H' của hình H.
Với đường tròn áp dụng tính chất phép đối xứng trục hoặc đối xứng tâm biến đường tròn thành đường tròn có cùng bán kính hoặc sử dụng quỹ tích.
II. Ví dụ
Ví dụ 1. Trong mặt phẳng tọa độ Oxy, cho phép biến hình .
Chọn mệnh đề đúng:
A. F là phép đối xứng trục Oy.
B. F là phép đối xứng trục Ox.
C. F là phép đối xứng với trục đối xứng là đường phân giác của góc phần tư thứ nhất.
D. F là phép đối xứng trục với trục là đường phân giác của góc phần tư thứ hai.