Phương pháp giải:
Phép cộng hai phân số:
⦁ Cộng hai phân số cùng mẫu: (với a, b, m ∈ ℤ và m ≠ 0).
⦁ Cộng hai phân số khác mẫu: Quy đồng mẫu số của phân số để đưa về phép cộng hai phân số cùng mẫu.
Phép trừ hai phân số:
⦁ Số đối: (với a, b ∈ ℤ và b ≠ 0).
⦁ Trừ hai phân số cùng mẫu: (với a, b, m ∈ ℤ và m ≠ 0).
⦁ Trừ hai phân số khác mẫu: Quy đồng mẫu số của phân số để đưa về phép trừ hai phân số cùng mẫu.
Chú ý:
– Muốn trừ hai phân số ta có thể cộng số bị trừ với số đối của số trừ.
(với a, b, c, d ∈ ℤ và b, d ≠ 0).
– Sau khi thực hiện phép cộng và phép trừ phân số, ta rút gọn kết quả (nếu có).
Phép nhân hai phân số
Quy tắc: Muốn nhân hai phân số ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.
Ví dụ 1:
Ví dụ 2:
Lưu ý:
+) Sau khi làm phép nhân hai phân số, nếu thu được phân số chưa tối giản thì ta phải rút gọn thành phân số tối giản.
+) Khi nhân hai phân số, sau bước lấy tử số nhân tử số, mẫu số nhân mẫu số, nếu tử số và mẫu số cùng chia hết cho một số nào đó thì ta rút gọn luôn, không nên nhân lên sau đó lại rút gọn.
Ví dụ quay lại với ví dụ 2 ở bên trên, ta có thể làm như sau:
Các tính chất của phép nhân phân số
+) Tính chất giao hoán: Khi đổi chỗ các phân số trong một tích thì tích của chúng không thay đổi.
+) Tính chất kết hợp: Khi nhân một tích hai phân số với phân số thứ ba, ta có thể nhân phân số thứ nhất với tích của hai phân số còn lại.
+) Tính chất phân phối: Khi nhân một tổng hai phân số với phân số thứ ba, ta có thể nhân lần lượt từng phân số của tổng với phân số thứ ba rồi cộng các kết quả đó lại với nhau.
+) Nhân với số 1: Phân số nào nhân với 1 cũng bằng chính phân số đó.
Lưu ý: ta thường áp dụng các tính chất của phép nhân phân số trong các bài tính nhanh.
Phép chia hai phân số
a) Phân số đảo ngược
Phân số đảo ngược của một phân số là phân số đảo ngược tử số thành mẫu số, mẫu số thành tử số.
Ví dụ: Phân số đảo ngược của phân số là phân số .
b) Phép chia hai phân số
Quy tắc: Muốn chia một phân số cho một phân số, ta lấy phân số thứ nhất nhân với phân số thứ hai đảo ngược.
Ví dụ:
Cho hình thang vuông ABCD, góc A = góc D = 90o và AD = DC (AB<CD). F là giao điểm của DA và CB.
Chứng minh:
Bác bảo vệ có chùm 10 chìa khoá để mở 10 ổ khoá ở các phòng học. Mỗi chìa chỉ mở được một ổ. Do sơ ý nên Bác không nhớ chìa khoá tương ứng với các ổ. Hỏi Bác phải thử nhiều nhất bao nhiêu lần để tìm được các chìa khoá tương ứng với các ổ khoá ở các phòng học trên?
Cho phương trình ( m là tham số )
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m
b) Gọi x1; x2 là các nghiệm của phương trình. Tìm giá trị của m để biểu thức
đạt giá trị nhỏ nhất
Cho tam giác ABC vuông ở A và BC = 2.AB. Gọi E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a) Chứng minh DB là phân giác của góc ADE.
b) Chứng minh BD = DC.
Chứng minh rằng: Với mọi số tự nhiên n thì : không chia hết cho 5
3 lọ mực đỏ và 2 lọ mực xanh giá 23000 đồng. 2 lọ mực đỏ và 3 lọ mực xanh giá 22000 đồng. Tìm giá tiền 1 lọ mực mỗi loại.