Cho tam giác ABC vuông ở A và BC = 2.AB. Gọi E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a) Chứng minh DB là phân giác của góc ADE.
b) Chứng minh BD = DC.
a) Vì BC = 2 AB
Mà E là trung điểm của BC
=> AB = BE = EC
Xét ΔABD và ΔEBD có:
AB = BE (cmt)
góc A1 = góc A2(gt)
BD: cạnh chung
=> ΔABD = ΔEBD (c.g.c)
=> góc ADB = góc EDB
=> DB là tia phân giác của góc ADE
b) VÌ ΔABD = ΔEBD( cmt)
=> góc BAD = góc BED = 90
Mà : góc DEB + góc DEC =180
=> góc DEB = góc DEC
Xét ΔDEB và ΔDEC có:
DE: cạnh chung
góc DEB = góc DEC(cmt)
BE = CE(gt)
=> ΔDEB = ΔDEC(c.g.c)
=> BD = DC
Phương pháp giải:
Các trường hợp bằng nhau của tam giác
a. Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh (c.c.c)
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
Xét có:
AB = A’B’
AC = A’C’
BC = B’C’
thì
b. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c)
Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau
c. Trường hợp bằng nhau thứ ba của hai tam giác: góc – cạnh – góc
Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.
Các trường hợp bằng nhau của tam giác vuông
• Hai cạnh góc vuông
Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (cạnh – góc – cạnh )
• Cạnh góc vuông và góc nhọn kề cạnh đó
Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc )
• Cạnh huyền – góc nhọn
Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc)
• Cạnh huyền – cạnh góc vuông
Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC. Chứng minh rằng
Cho hình thang vuông ABCD, góc A = góc D = 90o và AD = DC (AB<CD). F là giao điểm của DA và CB.
Chứng minh:
Bác bảo vệ có chùm 10 chìa khoá để mở 10 ổ khoá ở các phòng học. Mỗi chìa chỉ mở được một ổ. Do sơ ý nên Bác không nhớ chìa khoá tương ứng với các ổ. Hỏi Bác phải thử nhiều nhất bao nhiêu lần để tìm được các chìa khoá tương ứng với các ổ khoá ở các phòng học trên?
Cho phương trình ( m là tham số )
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m
b) Gọi x1; x2 là các nghiệm của phương trình. Tìm giá trị của m để biểu thức
đạt giá trị nhỏ nhất
Chứng minh rằng: Với mọi số tự nhiên n thì : không chia hết cho 5
3 lọ mực đỏ và 2 lọ mực xanh giá 23000 đồng. 2 lọ mực đỏ và 3 lọ mực xanh giá 22000 đồng. Tìm giá tiền 1 lọ mực mỗi loại.