Chứng minh rằng: Với mọi số tự nhiên n thì : không chia hết cho 5
Giả sử n2 + n + 2 chia hết cho 5
=> n(n + 1) + 2 chia hết cho 5
Ta thấy n(n + 1) chẵn => n(n + 1) + 2 chẵn
Do đó n(n + 1) + 2 có tận cùng là 0
=> n(n + 1) có tận cùng là 8
Mà n(n + 1) là tích 2 số liên tiếp nên không có tận cùng là 8
=> Điều giả sử sai
Vậy......
Phương pháp giải:
+ Dùng mệnh đề đảo
+ Phủ định rồi suy ra điều trái với giả thiết
+ Phủ định rồi suy ra trái với điều đúng
+ Phủ định rồi suy ra hai mệnh đề trái ngược nhau
+ Phủ định rồi suy ra kết luận
*Một số đẳng thức và bất đẳng thức cần nhớ:
Cho hình thang vuông ABCD, góc A = góc D = 90o và AD = DC (AB<CD). F là giao điểm của DA và CB.
Chứng minh:
Bác bảo vệ có chùm 10 chìa khoá để mở 10 ổ khoá ở các phòng học. Mỗi chìa chỉ mở được một ổ. Do sơ ý nên Bác không nhớ chìa khoá tương ứng với các ổ. Hỏi Bác phải thử nhiều nhất bao nhiêu lần để tìm được các chìa khoá tương ứng với các ổ khoá ở các phòng học trên?
Cho phương trình ( m là tham số )
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m
b) Gọi x1; x2 là các nghiệm của phương trình. Tìm giá trị của m để biểu thức
đạt giá trị nhỏ nhất
Cho tam giác ABC vuông ở A và BC = 2.AB. Gọi E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a) Chứng minh DB là phân giác của góc ADE.
b) Chứng minh BD = DC.
3 lọ mực đỏ và 2 lọ mực xanh giá 23000 đồng. 2 lọ mực đỏ và 3 lọ mực xanh giá 22000 đồng. Tìm giá tiền 1 lọ mực mỗi loại.