Lũy thừa và bội số trong toán 6
Lũy thừa một phép toán hai ngôi của toán học thực hiện trên hai số a và b, kết quả của phép toán lũy thừa là tích số của phép nhân có b thừa số a nhân với nhau.
Bội số của 1 số là các số chia hết cho số đó. Bối số nhỏ nhất của 1 số là số nhỏ nhất chia hết cho số đó.
Phương pháp giải:
Công thức
a) Lũy thừa với số mũ tự nhiên
(x ∈ ℚ, n ∈ ℕ, n > 1);
Nếu (a, b ∈ ℤ, b ≠ 0) thì:
.
Quy ước:
(x ∈ ℚ, x ≠ 0);
(x ∈ ℚ).
b) Nhân hai lũy thừa cùng cơ số
xm .xn = xm+n (x ℚ, m, n ℕ);
c) Chia hai lũy thừa cùng cơ số
xm : xn = xm-n (x ≠ 0, m ≥ n);
d) Lũy thừa của lũy thừa
= xm.n (x ℚ, m, n ℕ).
Bội một số nguyên
Chú ý:
• Nếu a = bq (b ≠ 0) thì ta còn nói a chia cho b được q và viết a:b = q.
• Số 0 là bội của mọi số nguyên khác 0.
Ví dụ:
Các bội của 3 là: 0; 3; 6; 9; -3; -6; -9;...
Cho hình thang vuông ABCD, góc A = góc D = 90o và AD = DC (AB<CD). F là giao điểm của DA và CB.
Chứng minh:
Bác bảo vệ có chùm 10 chìa khoá để mở 10 ổ khoá ở các phòng học. Mỗi chìa chỉ mở được một ổ. Do sơ ý nên Bác không nhớ chìa khoá tương ứng với các ổ. Hỏi Bác phải thử nhiều nhất bao nhiêu lần để tìm được các chìa khoá tương ứng với các ổ khoá ở các phòng học trên?
Cho phương trình ( m là tham số )
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m
b) Gọi x1; x2 là các nghiệm của phương trình. Tìm giá trị của m để biểu thức
đạt giá trị nhỏ nhất
3 lọ mực đỏ và 2 lọ mực xanh giá 23000 đồng. 2 lọ mực đỏ và 3 lọ mực xanh giá 22000 đồng. Tìm giá tiền 1 lọ mực mỗi loại.
Cho tam giác ABC vuông ở A và BC = 2.AB. Gọi E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a) Chứng minh DB là phân giác của góc ADE.
b) Chứng minh BD = DC.