Với tóm tắt lý thuyết Toán lớp 11 Bài 3: Hàm số liên tục sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 11.
Lý thuyết Toán lớp 11 Bài 3: Hàm số liên tục
A. Lý thuyết Hàm số liên tục
I. Khái niệm
1. Hàm số liên tục tại 1 điểm
Cho hàm xác định trên khoảng , . Hàm số được gọi là liên tục tại điểm nếu .
Hàm số không liên tục tại được gọi là gián đoạn tại điểm đó.
2. Hàm số liên tục trên một khoảng hoặc một đoạn
- Hàm số được gọi là liên tục trên khoảng nếu nó liên tục tại mọi điểm thuộc khoảng này.
- Hàm số được gọi là liên tục trên đoạn nếu nó liên tục trên khoảng và .
* Nhận xét: Đồ thị hàm số liên tục trên một khoảng là “đường liền” trên khoảng đó.
III. Một số định lí cơ bản
1. Tính liên tục của hàm sơ cấp cơ bản
- Hàm số đa thức và hàm số liên tục trên .
- Các hàm số và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.
2. Tính liên tục của tổng, hiệu, tích, thương của hai hàm số liên tục
Giả sử hai hàm số và liên tục tại điểm . Khi đó:
a, Các hàm số và liên tục tại điểm .
b, Hàm số liên tục tại điểm nếu .
Sơ đồ tư duy Hàm số liên tục
B. Bài tập Hàm số liên tục
Bài 1. Dùng định nghĩa xét tính liên tục của hàm số f(x) = x3 + 2x – 1 tại x0 = –1.
Hướng dẫn giải
Vậy hàm số đã cho liên tục tại x0 = –1.
Bài 2. Xét tính liên tục của các hàm số sau trên tập xác định của hàm số đó:
a) f(x) = x + sinx;
.
Hướng dẫn giải
a) Hàm số f(x) có tập xác định là ℝ.
Hai hàm số x và sinx liên tục trên ℝ nên hàm số f(x) = x + sinx liên tục trên ℝ.
b) Hàm số có tập xác định là ℝ\{2}.
Do đó hàm số liên tục trên mỗi khoảng (–∞; 2) và (2; +∞).
c) Hàm số h(x) có tập xác định là ℝ.
Vì tử thức cosx liên tục ℝ và mẫu thức x2 + 1 ≠ 0 liên tục trên ℝ.
Vậy h(x) liên tục trên ℝ.
Bài 3. Xét tính liêm tục của hàm số trên tập xác định của nó.
Hướng dẫn giải
Hàm số có TXĐ: D = ℝ.
Hàm số liên tục trên mỗi khoảng (–∞; –1); (–1; 0) và (0; +∞).
• Tại x = –1, ta có:
⇒ Hàm số f(x) liên tục tại x = –1.
• Tại x = 0, ta có:
⇒ Hàm số f(x) liên tục tại x = 0.
Vậy hàm số f(x) liên tục tại mọi điểm x ∈ ℝ.
Bài 4. Tìm giá trị của tham số m để hàm số liên tục trên đoạn [0; 2].
Hướng dẫn giải
Hàm số xác định trên [0; 2] và liên tục trên [0; 2).
Khi đó để f(x) liên tục trên đoạn [0; 2] thì hàm số liên tục tại x = 2.
Tức là ta cần có:
Ta có:
Do đó (*) xảy ra khi và chỉ khi .
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Cánh diều hay, chi tiết khác:
Lý thuyết Bài 2: Giới hạn của hàm số
Lý thuyết Bài 3: Hàm số liên tục
Lý thuyết Bài 1: Đường thẳng và mặt phẳng trong không gian
Lý thuyết Bài 2: Hai đường thẳng song song trong không gian
Lý thuyết Bài 3: Đường thẳng và mặt phẳng song song
Lý thuyết Bài 4: Hai mặt phẳng song song
Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Cánh diều hay, chi tiết khác:
Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác
Lý thuyết Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lý thuyết Chương 3: Giới hạn. Hàm số liên tục
Lý thuyết Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song