Lý thuyết Hàm số lượng giác và đồ thị (Cánh diều 2024) hay, chi tiết | Toán lớp 11

4.1 K

Với tóm tắt lý thuyết Toán lớp 11 Bài 3: Hàm số lượng giác và đồ thị sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 11.

Lý thuyết Toán lớp 11 Bài 3: Hàm số lượng giác và đồ thị

A. Lý thuyết Hàm số lượng giác và đồ thị

I. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

1. Hàm số chẵn, hàm số lẻ

Cho hàm số y = f(x) có tập xác định là D.

  • Hàm số f(x) được gọi là hàm số chẵn nếu xD thì xD và f(x)=f(x). Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.
  • Hàm số f(x) được gọi là hàm số lẻ nếu xD thì xD và f(x)=f(x). Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

2. Hàm số tuần hoàn 

Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T  0 sao cho với mọi xD ta có:

  • x+TD và xTD
  • f(x+T)=f(x)

 Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.

3. Đồ thị và tính chất của hàm số y =  sinx

Tập xác định là R.

Tập giá trị là [-1;1].

Là hàm số lẻ và tuần hoàn chu kì 2π.

Đồng biến trên mỗi khoảng (π2+k2π;π2+k2π) và nghịch biến trên mỗi khoảng (π2+k2π;3π2+k2π).

Có đồ thị đối xứng qua gốc tọa độ và gọi là một đường hình sin.

4. Đồ thị và tính chất của hàm số y =  cosx

Tập xác định là R.

Tập giá trị là [-1;1].

Là hàm số chẵn và tuần hoàn chu kì 2π.

Đồng biến trên mỗi khoảng (π+k2π;k2π) và nghịch biến trên mỗi khoảng (k2π;π+k2π).

Có đồ thị là một đường hình sin đối xứng qua trục tung.

5. Đồ thị và tính chất của hàm số y =  tanx

Tập xác định là R{π2+kπ|kZ}.

Tập giá trị là R.

Là hàm số lẻ và tuần hoàn chu kì π.

Đồng biến trên mỗi khoảng (π2+kπ;π2+kπ)kZ.

Có đồ thị đối xứng qua gốc tọa độ.

6. Đồ thị và tính chất của hàm số y =  cotx

Tập xác định là R{kπ|kZ}.

Tập giá trị là R.

Là hàm số lẻ và tuần hoàn chu kì π.

Đồng biến trên mỗi khoảng (kπ;π+kπ)kZ.

Có đồ thị đối xứng qua gốc tọa độ.

Sơ đồ tư duy Hàm số lượng giác và đồ thị.

 

B. Bài tập Hàm số lượng giác và đồ thị

Bài 1. Xác định tham số m để:

a) Hàm số f(x) = 5m.sin4x + cos2x là hàm số chẵn.

b) Hàm số g(x) = (m – 1).tanx.cotx là hàm số lẻ.

Hướng dẫn giải

a) Hàm số f(x) có tập xác định là D = ℝ.

Ta có ∀x ∈ ℝ thì –x ∈ ℝ.

Để hàm số f(x) là hàm số chẵn thì f(–x) = f(x), ∀x ∈ ℝ.

⇔ 5m.sin(–4x) + cos(–2x) = 5m.sin4x + cos2x, ∀x ∈ ℝ.

⇔ –5m.sin4x + cos2x = 5m.sin4x + cos2x, ∀x ∈ ℝ.

⇔ 10m.sin4x = 0, ∀x ∈ ℝ.

⇔ m = 0.

Vậy m = 0 thỏa mãn yêu cầu bài toán.

b) Hàm số g(x) có tập xác định là Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị.

Ta có ∀x ∈ D thì –x ∈ D.

Để hàm số g(x) là hàm số lẻ thì f(–x) = –f(x), ∀x ∈ D.

⇔ (m – 1).tan(–x).cot(–x) = –(m – 1).tanx.cotx, ∀x ∈ D.

⇔ (m – 1).tanx.cotx = –(m – 1).tanx.cotx, ∀x ∈ D.

⇔ 2(m – 1).tanx.cotx = 0, ∀x ∈ D.

⇔ m – 1 = 0.

⇔ m = 1.

Vậy m = 1 thỏa mãn yêu cầu bài toán.

Bài 2. Chứng minh các hàm số sau là hàm số tuần hoàn:

a) f(x) = tan2x, với T=3π2;

b) Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị, với T = 3π.

Hướng dẫn giải

a) Hàm số f(x) có tập xác định là Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị.

⦁ Ta có ∀x ∈ D thì x+T=x+3π2D và xT=x3π2D.

⦁ Lại có Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị

Vậy hàm số f(x) = tan2x là hàm số tuần hoàn.

b) Hàm số g(x) có tập xác định là E = ℝ \ {kπ | k ∈ ℤ}.

⦁ Ta có ∀x ∈ E thì x + T = x + 3π ∈ E và x – T = x – 3π ∈ E.

Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị

Bài 3. Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t của năm 2017 (có 365 ngày) được cho bởi một hàm số Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị, với t ∈ ℤ và 0 < t ≤ 365. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?

Hướng dẫn giải

Ta có tập giá trị của hàm số y = sinx là [–1; 1].

Tức là, sinx ≤ 1.

Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị

⇔ y ≤ 14 (*)

Yêu cầu bài toán ⇔ Tìm t để y = 14, với 0 < t ≤ 365.

Ta có dấu “=” của (*) xảy ra khi và chỉ khi Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị (**)

Quan sát hình vẽ, ta thấy đồ thị hàm số y = sinx cắt đường thẳng y = 1 tại x=π2+k2π, với k ∈ ℤ.

Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị

Do đó (**) tương đương với: Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị.

⇔ t – 60 = 89 + 356k (k ∈ ℤ).

⇔ t = 149 + 356k (k ∈ ℤ).

Vì 0 < t ≤ 365 nên 0 < 149 + 356k ≤ 365.

⇔ –149 < 356k ≤ 216.

149356<k5489.

Mà k ∈ ℤ nên k = 0.

Với k = 0, ta có: t = 149.

Vậy ngày 29 tháng 5 năm 2017 là ngày thành phố A có nhiều giờ có ánh sáng mặt trời nhất.

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 2: Các phép biến đổi lượng giác

Lý thuyết Bài 3: Hàm số lượng giác và đồ thị

Lý thuyết Bài 4: Phương trình lượng giác cơ bản

Lý thuyết Bài 1: Dãy số

Lý thuyết Bài 2: Cấp số cộng

Lý thuyết Bài 3: Cấp số nhân

Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Cánh diều hay, chi tiết khác:

Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác

Lý thuyết Chương 2: Dãy số. Cấp số cộng. Cấp số nhân

Lý thuyết Chương 3: Giới hạn. Hàm số liên tục

Lý thuyết Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

Đánh giá

0

0 đánh giá