Luyện tập 4 trang 46 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

747

Với giải Luyện tập 4 trang 46 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 5: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 5: Dãy số

Luyện tập 4 trang 46 Toán 11 Tập 1: Xét tính bị chặn của dãy số (un), với un = 2n – 1.

Lời giải:

Ta có: un = 2n – 1 ≥ 1, ∀ n ∈ ℕ*.

Do đó, dãy số (un) bị chặn dưới.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = 2n – 1 ≤ M với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

Lý thuyết Dãy số tăng, dãy số giảm và dãy số bị chặn

Dãy số (un) được gọi là dãy số tăng nếu ta có un+1>un,nN.

Dãy số (un) được gọi là dãy số giảm nếu ta có un+1<un,nN.

Dãy số (un) được gọi là bị chặn trên nếu  số M sao cho unM, nN.

Dãy số (un) được gọi là bị chặn dưới nếu  số m sao cho unm, nN.

Dãy số (un) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho munM,nN.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá