Luyện tập 2 trang 75 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

518

Với giải Luyện tập 2 trang 75 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 3: Hàm số liên tục giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số liên tục

Luyện tập 2 trang 75 Toán 11 Tập 1: Hàm số f(x) = Luyện tập 2 trang 75 Toán 11 Tập 1 | Cánh diều Giải Toán 11. Có liên tục trên ℝ hay không?

Lời giải:

+) Với mỗi x0  (– ∞; 2) có limxx0fx=limxx0x1=x01=fx0là hàm số liên tục.

+) Với mỗi x0  (2; +∞) có limxx0fx=limxx0x=x0=fx0là hàm số liên tục.

+) Tại x = 2, ta có: limx2fx=limx2(x-1) = 1và f(2) = – 2 nên limx2fxf2.

Vậy hàm số không liên tục tại x = 2.

Lý thuyết Khái niệm

1. Hàm số liên tục tại 1 điểm

 Cho hàm y=f(x) xác định trên khoảng (a;b)x0(a;b). Hàm số f(x) được gọi là liên tục tại điểm x0nếu limxx0f(x)=f(x0).

 Hàm số không liên tục tại x0 được gọi là gián đoạn tại điểm đó.

2. Hàm số liên tục trên một khoảng hoặc một đoạn

- Hàm số y=f(x) được gọi là liên tục trên khoảng (a;b) nếu nó liên tục tại mọi điểm thuộc khoảng này.

- Hàm số y=f(x) được gọi là liên tục trên đoạn [a;b] nếu nó liên tục trên khoảng (a;b) và limxa+f(x)=f(a),limxbf(x)=f(b).

* Nhận xét: Đồ thị hàm số liên tục trên một khoảng là “đường liền” trên khoảng đó.

Đánh giá

0

0 đánh giá