Hoạt động 1 trang 73 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

199

Với giải Hoạt động 1 trang 73 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 3: Hàm số liên tục giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số liên tục

Hoạt động 1 trang 73 Toán 11 Tập 1: Quan sát đồ thị hàm số f(x) = x ở Hình 11.

Hoạt động 1 trang 73 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Tính limx1f(x).

b) So sánh limx1f(x)và f(1).

Lời giải:

a) Ta có: limx1fx=limx1x = 1.

b) Ta có: f(1) = 1 nên limx1f(x)=f(1).

Lý thuyết Khái niệm

1. Hàm số liên tục tại 1 điểm

 Cho hàm y=f(x) xác định trên khoảng (a;b)x0(a;b). Hàm số f(x) được gọi là liên tục tại điểm x0nếu limxx0f(x)=f(x0).

 Hàm số không liên tục tại x0 được gọi là gián đoạn tại điểm đó.

2. Hàm số liên tục trên một khoảng hoặc một đoạn

- Hàm số y=f(x) được gọi là liên tục trên khoảng (a;b) nếu nó liên tục tại mọi điểm thuộc khoảng này.

- Hàm số y=f(x) được gọi là liên tục trên đoạn [a;b] nếu nó liên tục trên khoảng (a;b) và limxa+f(x)=f(a),limxbf(x)=f(b).

* Nhận xét: Đồ thị hàm số liên tục trên một khoảng là “đường liền” trên khoảng đó.

Đánh giá

0

0 đánh giá