Vận dụng trang 35 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

651

Với giải Vận dụng trang 35 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 4: Phương trình lượng giác cơ bản giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 4: Phương trình lượng giác cơ bản

Vận dụng trang 35 Toán 11 Tập 1Khi Mặt Trăng quay quanh Trái Đất, mặt đối diện với Trái Đất thường chỉ được Mặt Trời chiếu sáng một phần. Các pha của Mặt Trăng mô tả mức độ phần bề mặt của nó được Mặt Trời chiếu sáng. Khi góc giữa Mặt Trời, Trái Đất và Mặt Trăng là α (0° ≤ α ≤ 360°) thì tỉ lệ F của phần Mặt Trăng được chiếu sáng cho bởi công thức

F=121cosα.

(Theo trang usno.navy.mil).

Xác định góc α tương ứng với các pha sau của Mặt Trăng:

a) F = 0 (trăng mới);

b) F = 0,25 (trăng lưỡi liềm);

c) F = 0,5 (trăng bán nguyệt đầu tháng hoặc trăng bán nguyệt cuối tháng);

d) F = 1 (trăng tròn).

Vận dụng trang 35 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Lời giải:

a) Với F = 0, ta có 121cosα=0 ⇔ cos α = 1 ⇔ α = k2π, k ∈ ℤ.

b) Với F = 0,25, ta có 121cosα=0,25 cosα=12

cosα=cosπ3α=π3+k2πα=π3+k2πk.

c) Với F = 0,5, ta có 121cosα=0,5  ⇔ cos α = 0 ⇔ α = π2 + kπ, k ∈ ℤ.

d) Với F = 1, ta có 121cosα=1 ⇔ cos α = – 1 ⇔ α = π + k2π, k ∈ ℤ.

Lý thuyết Phương trình cosx=m

Phương trình cosx=mcó nghiệm khi và chỉ khi |m|1.

Khi |m|1sẽ tồn tại duy nhất α[0;π] thoả mãn cosα=m. Khi đó:

cosx=mcosx=cosα [x=α+k2πx=α+k2π(kZ)

 

* Chú ý:

a, Nếu số đo của góc αđược cho bằng đơn vị độ thì cosx=cosαo[x=αo+k360ox=αo+k360o(kZ)

b, Một số trường hợp đặc biệt

cosx=0x=π2+kπ,kZ.cosx=1x=k2π,kZ.cosx=1x=π+k2π,kZ.

Đánh giá

0

0 đánh giá