Bài 1.40 trang 27 Toán 8 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 8

489

Với giải Bài 1.40 trang 27 Toán 8 Tập 1 Kết nối tri thức chi tiết trong Bài tập cuối chương 1 trang 27 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài tập cuối chương 1 trang 27

Video bài giải Toán 8 Bài tập cuối chương 1 trang 27 - Kết nối tri thức

Bài 1.40 trang 27 Toán 8 Tập 1: Gọi T là tổng, H là hiệu của hai đa thức 3x2y – 2xy2 + xy và –2x2y + 3xy2 + 1. Khi đó:

A. T = x2y – xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.

B. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.

C. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 – xy – 1.

D. T = x2y + xy2 + xy – 1 và H = 5x2y + 5xy2 + xy – 1.

Lời giải:

Đáp án đúng là: B

Ta có:

• T = (3x2y – 2xy2 + xy) + (–2x2y + 3xy2 + 1)

= 3x2y – 2xy2 + xy – 2x2y + 3xy2 + 1

= (3x2y – 2x2y) + (3xy2 – 2xy2) + xy + 1

= x2y + xy2 + xy + 1.

• H = (3x2y – 2xy2 + xy) – (–2x2y + 3xy2 + 1)

= 3x2y – 2xy2 + xy + 2x2y – 3xy2 – 1

= (3x2y + 2x2y) – (3xy2 + 2xy2) + xy – 1

= 5x2y – 5xy2 + xy – 1.

Vậy T = x2y + xy2 + xy + 1; H = 5x2y – 5xy2 + xy – 1.

Đánh giá

0

0 đánh giá