Có ba cặp vợ chồng, trong đó có hai vợ chồng ông bà An đến dự một bữa tiệc. Không gian mẫu có bao nhiêu phần tử

828

Với giải Bài 9.27 trang 69 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài tập cuối chương 9 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải sách bài tập Toán lớp 10 Bài tập cuối chương 9

Bài 9.27 trang 69 SBT Toán 10 Tập 2Có ba cặp vợ chồng, trong đó có hai vợ chồng ông bà An đến dự một bữa tiệc. Họ được xếp ngẫu nhiên ngồi xung quanh một chiếc bàn tròn.

a) Không gian mẫu có bao nhiêu phần tử.

Hai cách xếp chỗ ngồi quanh bàn tròn được coi là như nhau nếu đối với mỗi người A trong nhóm, trong hai cách xếp đó, người ngồi bên trái A và bên phải A không thay đổi.

b) Tính xác suất để hai vợ chồng ông bà An ngồi cạnh nhau.

Lời giải:

a)

Mỗi cách xếp chỗ ngồi quanh bàn tròn là một phần tử của không gian mẫu. Giả sử 6 chiếc ghế quanh bàn tròn được đánh số là 1, 2,…..6 và xi kí hiệu là người ngồi ở ghế mang số i. Khi đó, mỗi cách xếp 6 người này (x1, x2, x3, x4, x5, x6) cho ta một hoán vị của tập hợp 6 người. Có tất cả 6! cách xếp chỗ ngồi cho họ.

Vì ngồi xung quanh 1 chiếc bàn tròn nên 6 cách xếp sau đây được xem là giống nhau. Mặc dù số ghế họ ngồi có thay đổi nhưng vị trí tương đối giữa 6 người đó là không thay đổi.

(x1, x2, x3, x4, x5, x6); (x2, x3, x4, x5, x6, x1);  (x3, x4, x5, x6, x1, x2);

(x4, x5, x6, x1, x2, x3); (x5, x6, x1, x2, x3, x4); (x6, x1, x2, x3, x4, x5)

Vậy chỉ có 6! : 6 = 120 cách xếp. Do đó, n(Ω) = 120.

b)

Gọi E là biến cố: “Hai ông bà An ngồi cạnh nhau”.

Ta coi hai ông bà An ngồi chung 1 ghế. Như vậy có 5! : 5 = 4! = 24 cách xếp. Vì hai ông bà An có thể đổi chỗ cho nhau nên có 24.2! = 48 cách xếp để hai ông bà An ngồi cạnh nhau, do đó, n(E) = 48.

Vậy P(E) = n(E)n(Ω)=48120=25=0,4 .

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 9.13 trang 67 SBT Toán 10 Tập 2Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc...

Bài 9.14 trang 67 SBT Toán 10 Tập 2Một cái túi đựng 3 viên bi đỏ, 5 viên bi xanh và 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để chọn được 3 viên bi màu đỏ là...

Bài 9.15 trang 67 SBT Toán 10 Tập 2: Gieo hai con xúc xắc cân đối...

Bài 9.16 trang 67 SBT Toán 10 Tập 2: Chọn ngẫu nhiên 5 số trong tập S = {1; 2;...; 20}. Xác suất để cả 5 số được chọn không vượt quá 10 xấp xỉ là...

Bài 9.17 trang 68 SBT Toán 10 Tập 2: Chọn ngẫu nhiên 5 học sinh trong một danh sách được đánh số thứ tự từ 1 đến 199...

Bài 9.18 trang 68 SBT Toán 10 Tập 2Một túi đựng 3 viên bi trắng và 5 viên bi đen. Chọn ngẫu nhiên 3 viên bi. Xác suất để trong 3 viên bi đó có cả bi trắng và bi đen là...

Bài 9.19 trang 68 SBT Toán 10 Tập 2Mũi tên của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong 7 vị trí. Người chơi được quay 3 lần. Xác suất để mũi tên dừng lại ở ba vị trí khác nhau là...

Bài 9.20 trang 68 SBT Toán 10 Tập 2: Gieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là...

Bài 9.21 trang 68 SBT Toán 10 Tập 2Chọn ngẫu nhiên hai số từ tập hợp S = {1; 2; ...;19} rồi nhân hai số đó với nhau. Xác suất để kết quả là một số lẻ là...

Bài 9.22 trang 68 SBT Toán 10 Tập 2: Gieo ba con xúc xắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên mặt của ba con xúc xắc khác nhau là...

Bài 9.23 trang 68 SBT Toán 10 Tập 2Một khách sạn có 6 phòng đơn. Có 10 khách thuê phòng trong đó có 6 nam và 4 nữ. Người quản lí chọn ngẫu nhiên 6 người cho nhận phòng...

Bài 9.24 trang 69 SBT Toán 10 Tập 2Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên ba con xúc xắc bằng 7...

Bài 9.25 trang 69 SBT Toán 10 Tập 2: Một cửa hàng bán ba loại kem: xoài, sô cô la và sữa. Một học sinh chọn mua ba cốc kem một cách ngẫu nhiên. Tính xác suất để ba cốc kem chọn được thuộc hai loại...

Bài 9.26 trang 69 SBT Toán 10 Tập 2Hai thầy trò đến dự một buổi hội thảo. Ban tổ chức xếp ngẫu nhiên 6 đại biểu trong đó có hai thầy trò ngồi trên một chiếc ghế dài. Tính xác suất để hai thầy trò ngồi cạnh nhau...

Bài 9.28 trang 69 SBT Toán 10 Tập 2Một chiếc hộp đựng 6 quả cầu trắng, 4 quả cầu đỏ và 2 quả cầu đen. Chọn ngẫu nhiên 6 quả cầu. Tính xác suất để chọn được 3 quả trắng, 2 quả đỏ và 1 quả đen...

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 25: Nhị thức Newton

Bài tập cuối chương 8

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Đánh giá

0

0 đánh giá