Xét các biến cố sau: A: “Hai số trên hai tấm thẻ bằng nhau”; B: “Hai số trên hai tấm thẻ chênh nhau 2”

484

Với giải ý b Bài 9.3 trang 63 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 26: Biến cố và định nghĩa cổ điển của xác suất giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải sách bài tập Toán lớp 10 Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 9.3 trang 63 SBT Toán 10 Tập 2: Hai túi I và II chứa các tấm thẻ được đánh số. Túi I: {1; 2; 3; 4}, túi II: {1; 2; 3; 4; 5}.

Rút ngẫu nhiên từ mỗi túi I và II một tấm thẻ.

b) Xét các biến cố sau:

A: “Hai số trên hai tấm thẻ bằng nhau”;

B: “Hai số trên hai tấm thẻ chênh nhau 2”;

C: “Hai số trên hai tấm thẻ chênh nhau lớn hơn hay bằng 2”.

Các biến cố A, A¯, B, B¯, C, C¯ là các tập con nào của không gian mẫu?

Lời giải:

b)

Xét biến cố A: “Hai số trên hai tấm thẻ bằng nhau”, ta có:

A = {(1, 1); (2, 2); (3, 3); (4, 4)}.

Xét biến cố: A¯  = Ω\A = {(1, 2); (1, 3); (1, 4); (1, 5); (2, 1); (2, 3); (2, 4); (2, 5); (3, 1); (3, 2); (3, 4); (3, 5); (4, 1); (4, 2); (4, 3); (4, 5)}.

Xét biến cố B: “Hai số trên hai tấm thẻ chênh nhau 2”, để thỏa mãn B ta có:

Khi rút ra từ túi I tấm thẻ đánh số 1 thì túi II phải rút ra thẻ đánh số 3

Khi rút ra từ túi I tấm thẻ đánh số 2 thì túi II phải rút ra thẻ đánh số 4

Khi rút ra từ túi I tấm thẻ đánh số 3 thì túi II phải rút ra thẻ đánh số 5

Khi rút ra từ túi II tấm thẻ đánh số 1 thì túi I phải rút ra thẻ đánh số 3

Khi rút ra từ túi II tấm thẻ đánh số 2 thì túi I phải rút ra thẻ đánh số 4

Do đó, B = {(1, 3); (2, 4), (3, 5); (3, 1); (4, 2)}.

Xét biến cố: B¯  = Ω\B = {(1, 1); (1, 2); (1, 4); (1, 5); (2, 1); (2, 3); (2, 2); (2, 5); (3, 2); (3, 3); (3, 4); (4, 1); (4, 3); (4, 4); (4, 5)}.

Xét biến cố C: “Hai số trên hai tấm thẻ chênh nhau lớn hơn hay bằng 2”, có nghĩa là hiệu số trên 2 tấm thẻ là 2 hoặc 3 hoặc 4.

Do đó, C = {(1, 3); (1, 4); (1, 5); (2, 4); (2, 5); (3, 5); (3, 1); (4, 1); (4, 2)}.

Xét biến cố: C¯  = Ω\C = {(1, 1); (1, 2); (2, 1); (2, 3); (2, 2); (3, 2); (3, 3); (3, 4); (4, 3); (4, 4); (4, 5)}.

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 9.1 trang 63 SBT Toán 10 Tập 2: Gieo một con xúc xắc liên tiếp hai lần...

Bài 9.2 trang 63 SBT Toán 10 Tập 2: Gieo một con xúc xắc đồng thời rút ngẫu nhiên một thẻ từ một hộp chứa 4 thẻ A, B, C, D...

Bài 9.3 trang 63 SBT Toán 10 Tập 2: Hai túi I và II chứa các tấm thẻ được đánh số. Túi I: {1; 2; 3; 4}, túi II: {1; 2; 3; 4; 5}...

Bài 9.4 trang 63 SBT Toán 10 Tập 2: Gieo một đồng xu và một con xúc xắc đồng thời. Tính xác suất của biến cố A: “Đồng xu xuất hiện mặt sấp hoặc con xúc xắc xuất hiện mặt 5 chấm”...

Bài 9.5 trang 63 SBT Toán 10 Tập 2Có hai hộp I và II. Hộp thứ nhất chứa 12 tấm thẻ vàng đánh số từ 1 đến 12. Hộp thứ hai chứa 6 tấm thẻ đỏ đánh số từ 1 đến 6. Rút ngẫu nhiên từ mỗi hộp một tấm thẻ. Tính xác suất của các biến cố:...

Bài 9.6 trang 63 SBT Toán 10 Tập 2Có ba chiếc hộp. Hộp thứ nhất chứa 5 tấm thẻ đánh số từ 1 đến 5. Hộp thứ hai chứa 6 tấm thẻ đánh số từ 1 đến 6. Hộp thứ ba chứa 7 tấm thẻ đánh số từ 1 đến 7. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Tính xác suất để tổng ba số ghi trên ba tấm thẻ bằng 15...

Đánh giá

0

0 đánh giá