20 Bài tập Tính chất của phép khai phương lớp 9 (sách mới) có đáp án

368

Tailieumoi.vn xin giới thiệu Bài tập Toán lớp 9 Tính chất của phép khai phương được sưu tầm và biên soạn theo chương trình học của 3 bộ sách mới. Bài viết gồm 20 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 9. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Tính chất của phép khai phương. Mời các bạn đón xem:

Bài tập Toán 9 Tính chất của phép khai phương

A. Bài tập Tính chất của phép khai phương

Bài 1. Tính:

Tính chất của phép khai phương (Lý thuyết Toán lớp 9) | Chân trời sáng tạo

Hướng dẫn giải

a) Ta có: 92=9=9.

b) Ta có: 672=67=67.

c) Ta có: 3236=36=3.

d) 492.0,81=49.0,9=49.910=25.

Bài 2. Rút gọn các biểu thức sau:

a) 72.5;

b) 100a2 với a < 0;

c) 6b.24b4b với b ≥ 0.

Hướng dẫn giải

a) Ta có: 72.5=75.

b) Ta có: 100a2=10a2=10a=10a với a < 0.

c) Với b ≥ 0, ta có:

6b.24b4b=6b.24b4b=144b24b

=12b24b=12b4b=12b4b=8b

Bài 3. Cho hình chữ nhật có chiều rộng a (cm), chiều dài b (cm) và diện tích S (cm2).

a) Tìm S, biết a=6, b=48;

b) Tìm a, biết S=56, b=3.

Hướng dẫn giải

a) Ta có: S = a.b

=6.48=6.48

=288=122

Vậy S=122 cm2.

b) Ta có: a = S : b

=56:3

=563=52

Vậy a=52cm

B. Lý thuyết Tính chất của phép khai phương

1. Căn thức bậc hai của một bình phương

Tính chất

Với biểu thức A bất kì, ta có A2=|A|, nghĩa là

A2=A khi A0;

A2=A khi A<0.

Ví dụ: Với x<0, ta có 1 – x > 0. Do đó (1x)2=1x.

2. Căn thức bậc hai của một tích

Với hai biểu thức A và B nhận giá trị không âm, ta có

A.B=AB.

Ví dụ:

27.3=27.3=81=9

Với a0,b<0 thì 25a2b2=52.a2.(b)2=52.a2.(b)2=5.a.(b)=5ab.

Nhận xét: Ta có thể biến đổi ab=a.b hoặc a.b=ab (a0 và b0) để việc tính toán được dễ dàng hơn.

Với số thực a bất kì và b không âm, ta có

a2b=|a|b.

Biến đổi này được gọi là đưa thừa số ra ngoài dấu căn.

Ngược lại, ta có biến đổi đưa thừa số vào trong dấu căn.

+ Nếu a0 thì ab=a2b.

+ Nếu a<0 thì ab=a2b.

Tổng quát, với hai biểu thức A và B mà B0, ta có A2B=|A|B.

Ví dụ:

75=25.3=52.3=53

15a.3a=15a.3a=32a2.5=|3a|5.

2. Căn thức bậc hai của một thương

Tính chất

Với biểu thức A nhận giá trị không âm và biểu thức B nhận giá trị dương, ta có

AB=AB.

Ví dụ: 4964=4964=78;

4a225=4a225=4.a225=2|a|5;

82=82=4=2;

Với a>0 thì 52a313a=52a313a=4a2=(2a)2=2a.

Nhận xét: Ta có thể biến đổi ab=ab hoặc ab=ab (a0 và b0) để việc tính toán được dễ dàng hơn.

Sơ đồ tư duy Tính chất của phép khai phương

Đánh giá

0

0 đánh giá