Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f > 0. Gọi d là khoảng cách từ vật đến thấu kính

500

Với giải Thực hành 4 trang 35 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản

Thực hành 4 trang 35 Toán 12 Tập 1: Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0), d' là khoảng cách từ thấu kính đến ảnh (ảnh thật thì d' > 0, ảnh ảo thì d' < 0). Ta có công thức:

1f=1d+1d' hay d'=dfdf.

(Vật lí 11, Nhà xuất bản Giáo dục Việt Nam, 2012, trang 182, 187).

Xét trường hợp f = 3, đặt x = d, y = d'. Ta có hàm số y=3xx3 và x ≠ 3.

a) Khảo sát và vẽ đồ thị của hàm số trên.

b) Dựa vào đồ thị hàm số trên, hãy cho biết vị trí của vật để ảnh của vật là: ảnh thật, ảnh ảo.

c) Khi vật tiến gần đến tiêu điểm thì ảnh thay đổi như thế nào?

Thực hành 4 trang 35 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a) Vì d > 0 nên với x = d thì x > 0.

Xét hàm số y=3xx3 với x > 0 và x ≠ 3.

1. Tập xác định: D = (0; 3) ∪ (3; + ∞).

2. Sự biến thiên:

● Chiều biến thiên:

Đạo hàm y' = 9x32. Vì y' < 0 với mọi x > 0 và x ≠ 3 nên hàm số nghịch biến trên mỗi khoảng (0; 3) và (3; + ∞).

● Tiệm cận:

Ta có limx+y=limx+3xx3=3. Suy ra đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số.

Ta có limx3y=limx33xx3=;  limx3+y=limx3+3xx3=+. Suy ra đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số.

● Bảng biến thiên:

Thực hành 4 trang 35 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

3. Đồ thị:

Đồ thị hàm số đi qua điểm (2; – 6) và điểm (6; 6).

Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.

Thực hành 4 trang 35 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

b)

● Để vật là ảnh thật thì d' > 0, tức là y > 0.

Quan sát đồ thị hàm số y=3xx3, ta thấy trên khoảng (3; + ∞), đồ thị hàm số nằm phía trên trục Ox nên y > 0 trên khoảng này. Vậy với x > 3, tức d > 3 hay khoảng cách từ vật đến thấy kính lớn hơn 3 thì ảnh của vật là ảnh thật.

● Để vật là ảnh ảo thì d' < 0, tức là y < 0.

Quan sát đồ thị hàm số y=3xx3, ta thấy trên khoảng (0; 3), đồ thị hàm số nằm phía dưới trục Ox nên y < 0 trên khoảng này. Vậy với x ∈ (0; 3), tức d ∈ (0; 3) hay khoảng cách từ vật đến thấu kính lớn hơn 0 và nhỏ hơn 3 thì ảnh của vật là ảnh ảo.

c) Khi vật tiến gần đến tiêu điểm, tức vị trí A tiến gần đến vị trí F, thì khoảng cách AF dần tiến tới 0, hay d – f → 0, suy ra d → f, tức là x → 3.

Đánh giá

0

0 đánh giá