Tam giác vuông có cạnh huyền bằng 5 cm có thể có diện tích lớn nhất bằng bao nhiêu

1.4 K

Với giải Thực hành 3 trang 18 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

Thực hành 3 trang 18 Toán 12 Tập 1: Tam giác vuông có cạnh huyền bằng 5 cm có thể có diện tích lớn nhất bằng bao nhiêu?

Lời giải:

Đặt một cạnh góc vuông là x (x > 0) thì cạnh còn lại là 5x2

Diện tích tam giác vuông là: f(x)=x5x2

Tập xác định: D=(0;5]

f(x)=5x2x25x2

Tập xác định mới: D1=(0;5)

f(x)=0[x=102x=102(loai)

Bảng biến thiên:

Giải SGK Toán 12 Bài 2 (Chân trời sáng tạo): Giá trị lớn nhất, giá trị nhỏ nhất của hàm số (ảnh 9)

Từ bảng biến thiên, ta thấy maxDf(x)=f(102)=52

Vậy diện tích lớn nhất của tam giác là 52

Đánh giá

0

0 đánh giá